
Legal Aspects of Knowledge-Based Technology

Roger Clarke, Department of Commerce, Australian National University, and
Visiting Professor, Institut Wirtscbaftsinformatik, Universitat Bern

Abstract: A definition of knowledge-based technology (KBT) is provided which is more operational than conventional
definitions of the term 'expert systems'. Ownership rights in products developed using KBT are considered and diffi-
culties discussed. Legal liabilities which may arise from such products are considered and issues identified. It is
concluded that commercial exploitation of KBT may be hindered by these legal difficulties. Some policy implications
are identified.

Introduction
Expert systems have been an active area of re-
search for three decades. In recent years claims
have been made, not just by marketing interests
but also by well-respected researchers, that they
are graduating into a commercially exploitable
technology (e.g. Michaelsen and Michie, 1983;
Johnson, 1984; Blanning, 1985; Buchanan, 1986;
Connell, 1987; Quinlan, 1987). Many large cor-
porations and government agencies have been
reported in the trade press as having embarked
upon pilot projects, and some claim to have
already implemented worthwhile applications.

Given that practical application is being made of
a new and potentially very powerful technology,
it is important that consideration be given to the
legal framework within which future disputes
regarding expert systems products and services
will be resolved. There has been little discussion
in the literature to date (but see Nycum et al.,
1985; Zeide and Liebowitz, 1987).

This brief survey paper commences with a
presentation of the nature of the technology,
then discusses the legal frameworks of owner-
ship rights, and of liabilities. Laws differ between
countries, and the comments in this paper are
phrased in a fairly abstract manner in an attempt
to be applicable to at least UK, US and Australian
jurisdictions.

Knowledge-based technology
The term 'expert system' is an unfortunate one,
because of the wide range of interpretations to
which it is subjected. In particular, the word
'expert' may refer to the source of the knowledge
captured into the software, or the nature or
standard of performance expected of it. The word

'system' may be understood very broadly, or
may refer to a specific piece of software as in the
term 'accounting system'.

For the purposes of this assessment, it is useful
to use the more general term `knowledge-based
technology' (KBT). By this is meant the appli-
cation of a set of analytical and programming
techniques and tools.

Because the field is still so new, the set of tech-
niques and tools is explained somewhat different-
ly by leading texts (e.g. Barr and Feigenbaum,
1981, 1982; Hayes-Roth et al., 1983; Harmon
and King, 1985). They may be classified broadly
into three groups:

knowledge acquisition, including rule induc-
tion and other machine-learning models;
knowledge representation, including various
models of semantic networks such as order-
attribute-value triplets and frames, together
with production rules, inheritance, plausible
reasoning, and logic programming;
inference procedures, including data-driven
forward chaining and goal-directed backward
chaining, depth-first and breadth-first search
strategies, and non-monotonic reasoning.

Conventional software development technology
deals with procedures or algorithms, which access
precisely structured data, whereas KBT places the
emphasis on 'knowledge'. Few authorities make
clear what they mean by this term. In practice,
the dominant manner in which it is used is as that
which can be expressed in the form of antecedent-
consequent-rules, i.e. IF-THEN-ELSE constructs.
At least at the operational level, knowledge is
used in contemporary KBT to mean sets of rules
and heuristics pertaining to some problem domain,
expressed as IF-THEN-ELSE constructs. Rules

10 JIT, 3, 1 Mardi 1988

are 'deep knowledge' based on causal models,
whereas heuristics are 'surface knowledge' based
on correlation alone. The important discontinuity,
compared to conventional software development
technology, is that the problem-solver no longer
needs to think down at the level of the procedures
and data which underlie the knowledge, and can
therefore cope with more difficult problem
domains.

The definition of knowledge used by KBT is
regarded as dangerously narrow by some com-
mentators, particularly from outside the inform-
ation technology disciplines but also, to some
extent, from within them (e.g. Dreyfus and
Dreyfus, 1986a, 1986b; Roszak, 1986; Winograd
and Flores, 1986).

Figure 1 provides a model of the development and
use of KBT as it is currently practised. Users
consult a 'knowledge base', by providing inform-
ation about some event or situation within the
problem domain. The software draws inferences,
by applying the rules stored in the knowledge base
to the case-specific data. A result is provided to
the user in the form of a diagnosis, prognosis,
recommendation, decision etc., depending on the
nature of the application. In addition, an explan-
ation may be provided showing the argument
whereby the software reached its conclusion.

In order to establish the knowledge base on
which the user consultation depends, knowledge
is captured from one or more people, called
'domain specialists' (or `experts'). This generally
requires an intermediary analyst programmer
referred to as a 'knowledge engineer', who ex-
presses the knowledge using some appropriate
language and supporting software.

The schema also incorporates three emergent
areas of KBT:

knowledge acquisition undertaken automatic-
ally, by analysing a set of historic cases, either
to assist the knowledge engineer or (so far, less
credibly) to create the knowledge base directly;
general purpose knowledge bases (such as an
encyclopaedia expressed in appropriate form)
which may be used as a base upon which the
domain-specific knowledge-b asemay be built;
inherent learning ability, such that the results
of new cases are used by the software to
modify the existing knowledge base.

The term 'adviser' applications of KBT was coined
some years ago to refer to software expressly
designed to support human decision-makers rather
than replace them. Adviser applications of KBT
demand significant additional investment in user
interface and explanation mechanisms. To distin-
guish software which actually makes decisions
(e.g. in intelligent building environment and

process control systems) this paper uses the term
'genuinely expert' applications of KBT. Of course,
a poorly-designed adviser, or one used by a person
inadequately trained or insufficiently sceptical of
the tool, may adopt the status of a de facto
genuinely expert application.

On the basis of these brief definitions and model,
ownership rights relating to applications of know-
ledge-based technology are discussed.

Legal rights
Rights relating to software generally
Ownership rights in software are established
through intellectual property law, the conven-
tional term used to refer to a set of related areas
of substantive law (Tapper, 1983; Ricketson).
As far as computer software is concerned, the
most important of these is copyright (Niblett,
1980; Lechter; Graham, 1984; Millard, 1985).
The term also includes patents, (registered)
designs, (registered) trade marks, trade secrets
and sui generis (specific-purpose) approaches
such as chip protection legislation. In different
circumstances, each of these heads of intellectual
property law has significance for software.

Remarkably, the applicability of copyright law
to software has been uncertain until the 1980s.
In the United States, it was established in a 1982
case that the 1980 amendment to the Copyright
Act had successfully established that computer
programs are copyrightable, and in a 1983 case
that this is so irrespective of the form of the
program (in particular source code, object code
or ROM).

In the relevant Australian case, the courts decided
that software was not copyrightable (Clarke,
1988). An amendment to the Copyright Act was
rushed through Parliament in mid-1984, but has
not yet been tested before the courts. In the
United Kingdom, although legal commentators
generally considered that software was copy-
rightable, the Copyright Act was amended in
1985 to make the coverage explicit. Neither the
old nor the new provisions have been tested before
the courts.

There are lingering doubts concerning works which
originate in machine-readable form, since these
may not be visible or otherwise humanly perceiv-
able, as copyright law generally requires. Hob-
lems could arise in relation to design graphics,
computer art, music and databases which come
into being with the aid of computers. The same
applies to text created using wordprocessing soft-
ware and text-editors. In addition to poems, novels
and business reports, software usually originates in
this way and any such problem would therefore
affect property rights in software.

User

Instances
or

Known Cases /
.

Expert
Systems
Shell

or
Language

Domain
Specialist
Interface

Logical Data Management

Developer
Interface

Case Results User

Interface

Legal Aspects of Knowledge-Based Technology 11

Figure 1. Basic schema for knowledge-based applications

Physical Data Management

DEVELOPMENT PHASE
Domain-
Specific

Rules
and

(Knowledge
Base

Pty
CKB USE PHASE

Data

:
/7-,...

... ..,.....,"
.. .--

Domain
Specialist(s) Knowledge Knowledge

1.

Engineer Acquisition
by Rule Say How -1111

Inference
or

Know-How Induction

Physical Data Management

Prompts

User Case-Specific Data
User Inference

Conclusions
Interface Engine

Explanation

Learning

Mechanism

12 JIT, 3,1 March 1988

Issues arising in relation to KBT
Where KBT is implemented using conventional
languages and data management software, it
probably enjoys the same level of protection as
does any other software. However, KBT's aim is
to break out of certain strictures placed upon the
analyst/developer by conventional development
infrastructures. A knowledge base is not 'soft-
ware' in the conventional sense, but rather a set
of interrelated rules, expressed in a manner that
enables processing by a particular kind of run-
time interpreter called an 'inference engine'.
It is not clear that courts will construe knowledge-
bases to be software for the purposes of copy-
right. They might treat them as some other type of
work to which copyright applies, or they might
find them to be uncopyrightable.

There are further aspects to the question of
ownership rights in software. KBT pilot projects
have been undertaken in a number of organiz-
ations to capture the expertise of a person who is
about to be lost to them, typically due to retire-
ment. Until now, these projects have been per-
ceived very positively by management, and have
involved the services of a highly-regarded know-
ledge engineer. The behavioural phenomenon
popularly called the 'fishbowl effect' has ensured
the goodwill of the domain specialist Consider
the same project in the absence of the aura of
importance and novelty. Where the domain
specialist declines the invitation to express his
know-how in understandable terms, by what
means can an employer seek to enforce his will
and his moral (and presumed legal) right? Laws
relating to trade secrets, confidence and Official
Secrets may preclude the person from divulging
the knowledge to another. Employment law
might preclude the person from using the know-
ledge to the advantage of himself or a future
employer. It may provide an enforceable right to
the employer regarding the divulging to him of
specific information or data (e.g. what was said in
a telephone conversation with a client). However,
it appears very unlikely that the law provides
employers with anything approaching an intellec-
tual property right in the knowledge of their
employees.

Where an application or program generator is used
to generate software, who owns the result the
person on whose behalf the parameters were
supplied, or the person who owns the program-
generator? This 'meta-authorship' problem (Hof-
stadter, 1979) arises in automated knowledge
acquisition, where 'surface' (correlation-based)
rules are generated from cases, and entered into a
knowledge base. Are these rules owned by the
organization for whom the induction process was
performed, the owner of the copyright in the cases

(if any exists), or the owner of the induction soft-
ware? The problem becomes even more difficult
to resolve in the case of machine learning, since
the knowledge base could be substantially changed
by the software self-modifying a single rule.

Legal liabilities
Liabilities arising in relation to software
generally
Legal responsibilities in relation to computer
software generally can arise in a variety of ways
(Nycum, 1979; Gemignani, 1981; Rumbelow,
1981; Tapper, 1983, pp.75-95 and 212-215;
Parry, 1983; Scott, 1984; Smedinghoff, 1986;
Edwards and Savage, 1986; Brown, 1986).

The most common source of liability is where a
breach of a contractual warranty results in harm
to a party to a contract (e.g. Cheshire and Fifoot,
1981; Guest, 1984). Express warranties are part of
the contract, and may arise from descriptions of
software, expressions of fact or promises import-
ant to the transaction, or software demonstrations.
In addition, an implied warranty of 'merchant-
ability' exists if the provider of a product is
generally in the business of providing such
products. This requires that a product be fit for
the ordinary purpose for which such a product
is used. The implied warranty of fitness for
(specific) purpose' imposes a higher standard,
but only arises in certain circumstances. A huge
body of case law embodies many exceptions and
interpretations. In some jurisdictions there are
additional layers of statute law, particularly in
transactions involving consumers.

Liabilities can also arise in relation to computer
software as a result of fraudulent misrepresent-
ation or deceit. A representation can be a written
or oral statement, can be implied by conduct
(including a product demonstration), or might be
implied by silence.

Every person has an obligation to take 'that degree
of care, precaution and vigilance which the circum-
stances justly demand', and if he fails to do so,
may be liable in negligence for personal injury and
property damage. The standard of care inferred
by courts depends on the status of the person in
relation to the activity he is performing, with
professionals expected to demonstrate a higher
standard of care.

In the UK and Australia, and especially in the USA,
forms of no-fault liability are tending to be im-
posed, both by statute (such as Sale of Goods and
Trade Practices Acts) and by common law. Such
'product liability' (sometimes called 'strict liabil-
ity') applies to goods but generally not to services,
and to sales but generally not to licences. Hence
it may apply to 'turnkey systems', and perhaps

Legal Aspects of Knowledge-Based Technology 13

Quality of use
decision when and when not to use any particular KBT application;
need for user dialect and domain understanding consistent with those of the domain specialist and
knowledge engineer;
non-visibility of defects;
blind administration of machine-dictated decisions seriously exacerbated;
method of ensuring detection of the need for mainteance;
difficulty of maintenance.

Quálity of product
lack of an adequate scientific basis;
over-simplification of inherently difficult and complex matters;
non-transmissibility of techniques
the rigours of financial administration;
experimental, prototyping approach;
independence from corporate database and transaction processing.

Moral and legal responsibility
high level of abstraction of software development activity, hence absence of explicit definitions of
solutions or even problems;
increased ambiguity of responsibility;
absence of responsibility for learned, autonomous behaviour.

to some kinds of system software sold with a
machine. Otherwise it has ver-y limited applicability
to software, and probably none at all to services
such as contract programming and consulting.
However, that position could change very rapidly.

In addition, a range of other torts may give rise to
liabilities in some circumstances. An example
would be defamation arising from a false state-
ment (e.g. concerning a person's credit record or
creditworthiness) issued 'automatically' by a
computer (i.e. under program control, without
human intervention).

Several of the areas of law discussed above apply
only to the extent that software is deemed by thc
law to be a product. Generally, custom-built
software and software created by customizing
packages are unlikely to be treated as products.
However, standard application packages, systems
software (especially if it is delivered with a com-
puter), and application software delivered as part
of a 'turnkey contract' are more likely to be
deemed to be, or to be part of, a product. There
are few jurisdictions where such matters have been
clearly established.

A problem shared with other complex technologies
is that information technology products involve
the co-operation of several suppliers, and hence
the assignment of liability among suppliers can
be difficult.

Although the laws relating to responsibility for
the actions of human agents are reasonably well
understood, those relating to the delegation of
responsibility to machines are less clear. In general,
the use of a computer cannot shield a person

Table I. Liability issues arising in relation to KBT

from his obligation to exercise due care (Nimmer
and Krauthaus, 1986). However, some circum-
stances may arise in which the courts may find it
unreasonable to sheet legal responsibility home
to the user organization.

Issues arising in relation to KBT
Many of the issues discussed in this section are of
some concern in the case of adviser applications,
and of serious concern in the case of 'genuinely
expert', decision-making applications. Table 1

summarizes the issues.

A number of elements combine to cause concern
about the quality of use of KBT applications.
Users must decide when and when not to use any
particular KBT application, and they therefore
need an appreciation of its scope and the bound-
aries of applicability. Then, to use it effectively,
they need a dialect and domain understanding
consistent with those of the domain specialist
and knowledge engineer. This requires significant
investment in user education and training and
the user interface. Adviser applications require
even more investment in the user interface, and
in explanation mechanisms.

Because defects in KBT applications are difficult
to detect, suspect applications may continue to
be used. Their rationale is even more mysterious
to the end user than that of conventional soft-
ware, and hence the existing incidence of blind
administration of machine-dictated decisions could
be seriously exacerbated.

Maintenance of KBT applications represents
a further area of concern. The need for
modifications to cope with changing external

14 JIT, 3, 1 March 1988

circumstances is more difficult to detect than with
conventional software. There are also greater diffi-
culties in performing maintenance, because the
programmer cannot foresee the impact that a new
or amended rule will have on the whole.

Organizations which use KBT-based applications
may lay themselves open to actions in negligence
and other torts such as defamation, unless they
take appropriate, additional precautions regarding
education and training, choice as to when to use
the software, knowledge-base maintenance, and
review of automated and semi-automated decisions.

A variety of factors result in concerns about
quality of product. Some critics within the com-
puter science community claim that KBT lacks
an adequate scientific basis (e.g. Hofstadter,
1985). This applies particularly to non-
deterministic forms of KBT, an area commonly
referred to as plausible reasoning (e.g. O'Neill,
1987). The pseudo-mathematics of Mycin's
'certainty factors' are a case in point.

Because of this inadequate basis, there is a real
danger of over-simplification of inherently difficult
and complex matters. Available models or formal-
isms may be imposed on problem domains, because
of their convenience to the knowledge engineer
rather than their suitability for representation of
the particular type of knowledge. Related risks are
an excessive reliance on correlation-based heuristics
rather than causal model-based rules (surface rather
than deep knowledge), and the cramming of 'grey'
areas of knowledge into deterministic models. The
danger exists of losing the ambiguity and tolerance
needed by human systems to cope with unfore-
seen and extenuating circumstances, ambiguity of
legal and moral prescriptions, and (increasingly
rapid) changes in social standards.

The popularization of any technology involves its
simplification, the training of practitioners with
experience in earlier technologies but without an
appropriate educational base, and application in
many different real-word contexts. Techniques
used and understood by pioneer knowledge
engineers might not be transmissible to more
ordinary mortals.

It is normal to adopt an experimental proto-
typing approach to KBT applications. Clearly,
quality assurance is more difficult in such
circumstances than with more planned and disci-
plined software engineering methods. As KBT is
commercialized, the ethos of the pioneers will
have to be moderated, and methods adapted to
provide greater confidence in the outcome.
However, another effect of the routinization of
KBT will be that fringe modules such as audit
trails, user interfaces and explanation subsystems
(despite their importance noted in the previous

section) are likely to be among the first casualties
of budget pruning.

A further area of concern is that KBT-based appli-
cations have generally been conceived as independ-
ent software, often running on equipment with
limited connectability with the organization's
major equipment. For KBT applications to reflect
up-to-date 'knowledge', they must be integrated
with corporate database and transaction proces-
sing systems.

As a result of product deficiencies, user organiz-
ations may incur additional liabilities in negligence,
or in other torts such as defamation. In addition,
the supplier (or any and all members of a chain of
supplier organizations) may be subject to
additional contingent liabilities in some cases
to user organizations, in others directly to an
affected third party. These may readily arise under
contract law, fraudulent misrepresentation and
negligence. If the no-fault liability area of law
were to develop quickly, it would be very easy
for KBT applications, by their very nature, to be
interpreted by the courts as being in a 'defective'
or inherently dangerous state when they left the
original supplier.

Moral and legal responsibility in relation to KBT is
also a matter of concern. The generations of con-
ventional software development technology have
successively decreased the extent to which the
human analyst/developer has needed to under-
stand and define the problem and its solution.
The third generation of procedural languages en-
abled programmers to express a problem solution
in a convenient form. The current fourth gener-
ation of program and application generators
enables the human to delegate the solution to the
computer, and focus on the problem definition.

KBT models not the problem, but the problem
domain. It relieves the software developer of the
responsibility for formulating explicit definitions
of the problems which are to be solved. If they
exist at all, the problem definitions are neither
within the program, nor the knowledge base, nor
the case-specific data, nor the inference engine.
Each problem definition is implicit within a
particular process or case, which is an ephemeral
combination of elements of all of them.

KBT brings software development to the point
where the analyst/developer no longer needs to
have a clear understanding of the problems the
product is to solve. The moral and professional
responsibility of developers is therefore dimin-
ished. More remotely, should users become heavily
reliant on KBT-based software, professional
standards among domain specialists could de-
cline for example among provincial and country
medical specialists.

At the same time, there is an increased ambiguity
of legal responsibility. The user can invoke the
'piano-player's defence', i.e. 'It was my job to
apply the tool, not to understand it.' However,
the developer can conceivably adopt the same
stance since his role was merely to capture the
know-how of another person or people into
machine-processable form. Meanwhile the domain
specialist(s) can avoid responsibility because the
form in which the knowledge was expressed only
vaguely resembled their knowledge, and they
could not be expected to understand and audit
the particular formalism used by the knowledge
engineer.

Automated knowledge acquisition based on
correlation rather than causality further risks
diminution of responsibility. And assigning legal
responsibility for learned, autonomous behaviour
will be a serious challenge to the law.

It seems likely that harm arising from KBT appli-
cations may not be effectively justiciable. In some
cases this will be because no person can be held
legally responsible for mitigating the harm done;
in others because determination of responsibility
is dependent upon an unbearably lengthy (i.e.
five- to ten-year), expensive, energy-sapping and
legal-technical test case.

Implications
Because the law is always uncertain, and ever
(slowly) changing, the pioneers of any new tech-
nology face some degree of risk that the law will
not recognize their presumed protections, or will
retrospectively impose unexpected responsibilities,
and hence liabilities. Some of the risks faced by
early adopters of KBT are that knowledge bases
may not be copyrightable; that knowledge bases
could be deemed to be products, and hence
implied warranties and product liability applied
to them; that the courts could interpret pro-
fessional standards to have developed sufficiently
quickly that a high standard of due care applies to
software products and services; and that a slow
and expensive appeals process will have to be
pursued in order to establish the law.

Management will be well advised to recognize the
importance of deciding whether an application is
an adviser, or a 'genuinely expert' application of
KBT. Adviser systems will require significantly
greater investment in user interface and explan-
ation subsystems.

There are also considerable implications for
governments. If the benefits of KBT are to be
realized, at the same time as ensuring public
protection, key uncertainties in the law should be
removed. Copyright in knowledge bases should be
clarified. The legal definition of 'product' should

Legal Aspects of Knowledge-Based Technology 15

be amended to explicitly include software and
knowledge bases, or explicitly exclude them, or
include them in explicitly defined circumstances
(e.g. when sold with hardware). If restrictions on
the sharing of court costs were eased, the law
could be clarified without a first transgressor
having to carry all the arrows in his back. In
court cases in which difficult technological matters
are a central issue, the courts could be encouraged,
or empowered, to adopt more effective techniques.
The present approach using expert witnesses
supplied by litigant and respondent could be
replaced or supplemented by the judge having his
own technical advisers, in some sense at least,
on the bench.

Where it is appropriate to impose the risk of new
products on their purveyors, self-regulation and
risk-sharing should be encouraged. These arrange-
ments might take the form of mutual insurance
funds, or compulsory third party insurance as in
workers' compensation and motor vehicle accident
insurance.

There are enormous gaps and uncertainties in
public liability law, in relation to both negligence
and accident. Computer software is less poten-
tially devastating than nuclear energy and the
chemical, petrochemical and biochemical indus-
tries. If it fulfils its promise, through such develop-
ments as knowledge-based technology, that may
not always be the case.

References
Barr, A. and Feigenbaum, E.A. (eds.) (1981,
1982) The Handbook of Artificial Intelligence
Vols 1 and 2. Kaufman.

Blanning, R.W. (1985) Expert systems for manage-
ment: research and applications. Journal of
Information Science, 9, 153-62.

Brown, C.M. (1986) Liability for the supply of
defective software. Computer Law and Practice,
3, 1,2-12.

Buchanan, B.G. (1986) Expert systems: working
systems and the research literature. Expert Sys-
tems, 3, 1, 32-51, January.

Cheshire, G.C. and Fifoot, C.H.S. (1981) The
Law of Contract.

Clarke, R. (1988) Judicial understanding of
information technology: the case of the wombat
ROMs. Computer Journal, 31, 1, 25-33, February.

Connell, N.A.D. (1987) Expert systems in account-
ancy: a review of some recent applications.
Accounting and Business Review, 77, 67, Summer.

Dreyfus, H.L. and Dreyfus, S.E. (1986a) Mind
Over Machine. Blackwell.

16 JIT, 3, / March /988

Dreyfus, H.L. and Dreyfus, S.E. (1986b) Why
expert systems do not exhibit expertise. IEEE
Expert, Summer.

Edwards, C. and Savage, N. (eds.) (1986) InjOrm-
ation Technology and the Law, Macmillan. (See
especially the articles by Chalton (pp.5-24) and
Kaye (pp.25-51).)

Semignani, M.C. (1981) Product liability and
software. Rutgers Journal of Computers, Tech-
nology and Law, 8, 173-204.

Graham, R.L. (1984) The legal protection of
computer software. Comm ACM, 27, 5, 422-6.

Guest, A.G. (ed.) (1984) A 1150i1 's Law of Contract
26th edition.

Harmon, P. and King, D. (1985) Expert Systems.
Wiley.

Hayes-Roth, F. et al. (1983) Building Expert
Systems. A dd is o n -W esley.

Hofstadter, D.R. (1979) Godel, Escber, Bach: a»
Eternal Golden Braid. Penguin, 1980, p.607.
(Originally published by Basic Books, 1979.)

Hofstadter, D.R. (1985) Metamagical 7'hemas.
Penguin, 1986. (Originally published by Basic
Books, 1985.)

Johnson, T. (1984) The Commercial Application
of Expert System Technology. Ovum, London.

Lechter, M.A. (1981) Protecting software and
firmware developments. IEEE Computer, pp.
73-82.

Michaelsen, R. and Michie, D. (1983) Expert
systems in business. Datarnation, November.

Millard, C.J. (1985) Legal Protection of Computer
Programs and Data. Sweet and Maxwell.

Niblett, B. (1980) Legal Protection of Computer
Programs. Oyez.

Nimmer, R. and Krauthaus, P.A. (1986) Computer
error and user liability risk. Defense Law journal,
35, 4, 579-99.

Nycum, S.H. (1979) Liability for malfunction of a
computer program. Rutgers Journal of Computers,
Technolog:y and Law, 7, 1-22.

Nycum, S.H. ct al. (1985) Artificial intelligence
and certain resulting legal issues. Tbe Computer
Lawyer, pp.1-10, May.

O'Neill, J. (1987) Plausible reasoning. Australian
Computer Journal, 19, 1, February.

Parry, A.E. (1983) Data processing risks seven

examples of exposure. Computer and Society,
13, 3, Summer.

QuinlanI.F. (ed.) (1987) Applications of Expert
Systems. Addison-Wesley.

Ricketson, S. (1984) The Law of Intellectual
Property. But terworths.

Roszak , T. (1986) The Cult of Informal
Pantheon, USA.

Rumbelow, C. (198E) Liability for programming
errors. The International Business Lawyer, 9,
303.

Scott, M.D. (1984) Computer Law. Wiley.

Smedinghoff, TJ. (1986) The Legal Guide to
Developing, Protecting and Marketing Software.
Wiley.

Tapper, C. (1983) Computer Lin) 3rd edition.
Longman.

Winograd, T. and Flores, F. (1986) Understanding
Computers and Cognition. Ablex.

Zeide, J.S. and Liebowitz, J. (1987) Using expert
systems: the legal perspective. IEEE Expert,
pp.19 -22 , Spring.

Biographical notes

Roger Clarke joined the Department of Com-
merce at the Australian National University in
1984 as Reader in Information Systems. This
followed 17 years in professional, managerial and
consulting work in the private sector in Sydney,
London and Zürich. His areas of interest arc
application software technology and its manage-
ment, and economic, legal and social aspects of
information technology. This paper was com-
pleted during a Visiting Professorship at the
Institut fin. Wirtschaftsinformatik at the Uni-
vk'rsity of Bern, Switzerland.

Address for correspondence: Department of
Commerce, Australian National 'University, Can-
berra ACT 2611, Australia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

