
A Background to Program
Generators for Commercial
Applications
Roger Clarke*

The emergence and key features of program generators are explained. Examples are given of the
appearance and use of one particularly advanced product

Keywords and Phrases: application generator, DELTA, macro language, macro processor,
pre-processor, program generator, software portability, specification language, very high level language.

CR Categories: 41.2,4.22.

INTRODUCTION
Since the dawn of programming better methods have

been sought. One major focus has been upon efficiency in
the use of processor and main memory resources, and in
some circumstances these factors remain paramount.

Another focus has been on the manner in which pro-
grams are prepared. Varying degrees of maturity have been
reached in the many aspects of languages. Their power has
developed to such an extent in fact, that they offer far
more than that needed by the vast majority of applications.
As a result of this the problems arise of finding sufficient
staff who are sufficiently highly trained to handle such
languages, then constraining them to a narrow (and partly
arbitrary) discipline in its use.

In order to combat such problems new methods of
program preparation are emerging. These depend on param-
eter driven utility programs which generate a high level
language program. Sub-problems may still require the
power of the host language; for such cases it is necessary to
be able to insert code into the appropriate location in the
generated program. It is reasonable to view such program
generators as preliminary attempts at future higher level
languages. They are however identifiable products, and have
some characteristics different from existing languages. This
article will deal with them independently from questions of
language design.

After a brief discussion of the reasons which stimula-
ted the production of program generators, their emergence
is traced and the concepts central to the theory are presen-
ted in stepped form. Examples are given based on one such
product, and brief comments provided on the impact of the
new tools.

THE STIMULUS
Modern theories of system and program development

are poorly served by old languages and programming en-
vironments. Yet the enormous investment in software and
in trained software development staff precludes a simple-
minded revolution. One approach to provide a ‘bridging’

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

technology between old and new is to install a pre-
processor before the compiler, to enable and/or require
programmers to write in structured style, despite the weak-
nesses of the host language. In addition other deficiencies in
the language can be catered for. An important product in
this field was MetaCOBOL (see ADR, 1974a, 1974b), a
commercial application of the ‘Stage II’ generator (Waite,
1974). It offered the ability to create additional verbs
(case-construct, in-line PERFORM, initialise-table), to
improve syntax (explicit ENDIF, a quasi-local variable
feature), to recognise multiple alternative short forms, and
to ‘massage’ the layout of the code for consistent presen-
tation and indentation — critical factors in making
programs readable and maintainable by persons other than
the author.

The problem with conventional high-level languages,
even when front-ended in this way, is that their power and
complexity demand considerable expertise on the part of
the programmer. Few problems arise in commercial pro-
gramming that aren’t capable of appropriate solution; but
there are far too few suitably trained people to do the sol-
ving. Given that the vast majority of development groups
work within a fairly small set of (partly consciously chosen)
techniques, the full power of the host language could be
foregone.

An additional problem is the matching of program-
ming technology to the system analysis and design tech-
nologies that precede it in the application-software produc-
tion-line. It is now fairly clearly established that multiple
languages at different levels of abstraction are necessary
(Hawryszkiewycz, 1981) and that therefore language trans-
lation problems will occur. In addition these languages can
be expected to require some time yet before they stabilise,
and the likelihood of multiple alternative languages at any
given level of abstraction seems to be quite high. It is there-
fore desirable that the interface between the design and the
programming syntaxes be supported by a powerful macro-
language. Only in this way can the programmer/coder in all
cases be provided with the means to perform simple, quick
and efficient translation from the design documents/text
files into compilable code.

THE DEVELOPMENT PATH OF
PROGRAM GENERATORS

Progress has been achieved incrementally, and this
*Ueberlandstrasse 465, 8051 Zurich, Switzerland. Manuscript received January 1982.

48 The Australian Computer Journal, Voi. 14, No. 2, May 1982

Program Generators

article proceeds in a similar manner. The first necessary
step was the realisation that commercial application
development involved considerable repetition of effort,
and on the other side of the coin, considerable code redun-
dancy. Many functions were coded once per program rather
than once per application, or even once for the entire
installation. Several facilities have been used to overcome
this wastage; for example Copy Libraries and Subprogram
Calls remove localised and small-scale redundancies.

In addition to redundancy in processing code there is
structural repetition. By this I mean that the majority of
program structures are, or could be, formal variants of a set
of models. To combat the wastage resulting from structural
repetition requires a fundamental reorganisation of appli-
cations development, and investment in more effective sup-
porting software.

The term in common use for such software seems to
be 'program generator’ and that term will be used in this
article. Some more precise phrase such as 'parameter driven
assembly of high level language programs’ would be advan-
tageous, but wordy.

PHASE O - REDEPLOYMENT OF STAFF
The prevailing nonsensical EDP convention of com-

mencing to count at zero is conformed with by harking
back to the most primitive, and sometimes the most effec-
tive manner of knowledge transfer. Experience in the
development of commercial software is exchanged between
projects in a planned manner through the assignment of
staff with relevant ‘know-how’. An even greater amount of
experience sharing is achieved in less planned fashion
thanks to the velocity of staff within the job market.

This method of knowledge transfer is entirely
informal, too heavily reliant on individuals, and unmeas-
urable. Given the considerable variation between user appli-
cations across the various sectors of large and small
primary, secondary and services industries, government
enterprises and utilities and the public service it is difficult
for tertiary courses to provide entrants to the information
industry with directly useful applications experience.

Since formal education in such matters is difficult to
come by, the interchange of staff between projects and
employers will remain an important factor in knowledge
transfer in all areas of computer applications. The possi-
bility of formalising the process is greater in the more
precise field of programming than in system analysis and
design, yet even in this field the first steps were small and
tottering.

PHASE 1 - COPY-A-PROGRAM AND AMEND
Plagiarism began with the selection of a program that

bore some resemblance to the new one and the copying of
the parts that seemed relevant and helpful. The method
comprises Figure 1:
— selection of a model program;
— copying to a new file;
— leaving lines unchanged which are common to both

programs;
— deleting lines particular to the old program;
— amending lines which are common but which con-

tain terms particular to the program (such as the
name of the program and the name of the driving
file);

— inserting lines particular to the new one.
This approach can achieve significant gains:

— experience is explicitly transferred;
— it can take less time to prepare the source file;
— it can take less time to achieve a clean program;
— the resulting program is similar in style to its ‘father’.

It would be wrong to overlook the inherent problems.
— how is the program selected as suitable for ‘father-

hood’;
— how correct is ‘father’ as regards its original task;
— how relevant is ‘father’ to the new problem. Many

mismatches between the two will be subtle, emerging
only when testing reveals strange anomalies;

— no relationship is maintained between ‘father’ and
‘son’. Subsequent changes in one are not easily asso-
ciated with the other.
Nonetheless many organisations have profited from

this technique.

PHASE 2 - COPY-A-SKELETON AND AMEND
A step which overcomes many of the deficiencies of

Phase 1 is the formalisation of the ‘father’. That task can
require considerable investment depending on the suitability
of the models available, the degree of difficulty of the pro-
gram type involved, the ambitiousness of the project and
the experience and competence of the staff assigned.

The preparation of the skeleton involves the follow-
ing:
— define the program type to be supported;
— identify those parts of the sample program(s) com-

mon to the program type;
— define the variants of the program type which are to

be catered for, and which are beyond the scope of
that skeleton;

— assemble a ‘first-cut’ version of the skeleton from the
sample(s);

— identify the variables as such. For example the driv-
ing file may have been CUST; it might be replaced
with DFN (for ‘Driving File Name’). In practice it
is beneficial to use a string which is not legal in the
source language;

— since few programs are direct analogues of one
another, build in options which the programmer can
select as appropriate. This might for example be

old
program COPY

temporary

EDITOR

Delete

- Insert

Figure 1. Copy-a-Program-and-Amend.

The Australian Computer Journal, Vol. 14, No. 2, May 1982 49

Program Generators

EDITOR

COPY

- Replace variables
- Select options
- Insert

Figure 2. Copy-a-Skeleton-and-Amend.

achieved by the marking of optional lines as active or
commented out;

— define the points within the skeleton at which pro-
grammers will under particular circumstances need to
insert additional code.
The development of a program using such a skeleton

comprises Figure 2:
— selection of the appropriate skeleton;

copying to a new file;
— the replacement of the variables;
— choosing the appropriate options;
— inserting additional lines particular to that program.

The scale of the effort involved varies widely. In the
author’s experience a file handling sub-program requires
about six variables, no additional code, and about five
minutes’ work. For a reasonably flexible on-line master
file maintenance program about 35 variables and 15 options
were needed. The number of insertion lines varied directly
with the amount and complexity of validation — between
50 and 2000 lines — giving a total development time be-
tween' two hours and four days. If the average line rate
seems high (600 lines/hour for simple programs, 100 for the
more difficult ones), it should be recalled that this code is
composed almost entirely of editing instructions directly
translated from the specifications and containing virtually no
control structures.

Advantages of this approach as compared with
conventional programming are:
— experience has been invested in the skeleton, and is

directly transferred to each program;
— less time is required to prepare the program;
— the new program requires testing only of the pro-

gram-specific code (assuming that the particular com-
bination of options was tested as part of the skele-
ton’s development), hence less time is required to
achieve a clean program;

— the resulting program’s style is dictated by the skele-
ton.
There remain deficiencies:

— the selection of an appropriate skeleton for the task
depends on criteria that are rarely fully understood;

— investment in some amount of abstract theorising
and experimentation is a precondition of success. In-
stallations which oppose abstraction per se and limit
their techniques to those taught by their equipment
and software suppliers are therefore ill-served by this
method. It requires confidence on the part of the in-
stallation management that they can manage the risks
involved;

— a sufficiently large volume of programs of each type
is necessary to justify the investment. In the author’s
experience a breakpoint was already reached with
three or four programs, but that is sensitive to the
skeleton builder’s experience in and flair for both
skeleton building and the program types;

— an on-line development environment is essential,
with suitable supporting software, in particular a
full-screen editor with string replacement and line
insertion capabilities (Clarke, 1982a);

— no continuing relationship exists between the skele-
ton and the programs produced from it. Subsequent
corrections and improvements to the skeleton can
only be included in each of its progeny by pain-
staking effort.
Efforts to overcome this last deficiency lead to the

third phase.

PHASE 3 - SIMPLE PROGRAM GENERATORS
Once skeletons have been established it becomes

attractive to have the benefit of the maintenance of those
skeletons flowing more-or-less automatically to its progeny.
The classes of maintenance include error correction (a
skeleton is, like any program, ‘clean’ only until the next
bug is found), efficiency improvement, the adaptation of
existing facilities to new standards and to new run time
environments, and the provision of additional features.

The step required to link programs to their skeleton is
to store the instructions used in their preparation, and
regard these rather than the generated high level language
code as the source program. As Figure 3 depicts, the
instructions to be stored comprise the assignment of values
to variables, the selection of options and the insertion of
additional source lines. A utility program is required to

EDITOR

- Select Skeleton
- Assign Variables
- Select Options
- Insert

Director-File
(permanent)

skeleton GENERATOR

^ program ^

Figure 3. Simple Program-Generator.

The Australian Computer Journal, Vol. 14, No. 2, May 198250

Program Generators

merge the skeleton with the additional source lines, carry-
ing out the (global) variable replacement and option setting
as it goes. Such a utility is popularly termed a program
generator; for the input I will use the term ‘director file’.

The development of such a generator requires string
handling capabilities. Nonetheless implementation even in
COBOL requires under 10 days, and installations with
expertise in more suitable languages should require yet less
effort. Assuming that a small collection of 34 skeletons is
created, then the breakeven point will be of the order of
only two or three uses per skeleton — a point reached or
reachable in almost any single new application.

An additional investment involved is the formalisa-
tion of the skeletons. A Phase 2 skeleton can contain loose
comments of the form ‘if both options A and B are selec-
ted, then datafields X and Y must be OCCURed twice, with
consequent changes in Procedures P and Q’. This may have
been the most cost-effective solution in Phase 2, but cannot
be tolerated once a generator is implemented. Such prob-
lems are quite soluble, but require disproportionately high
investment. (The pragmatic solution is to add this condit-
ion to the list of variants unsupported by the generator:
‘For Priority Release’ as the sales brochures say.)

When a skeleton is revised, all that is necessary to pass
the revisions to its progeny is to re-run the generator against
the director file. Late amendments in the file handling tech-
nique or the user interface no longer justify fears of excess-
ive rework costs and delays.

Some limitations must be recognised of course:
— considerable unanimity is required as to what con-

stitutes good programming style and appropriate
program structure;

— the preparation of suitable skeletons requires fam-
iliarity with a wide range of program types as well as
the ability to abstract;

— machine overhead is incurred by the generation run.
The programs require far less testing, but the net
effect is hard to measure and correspondingly easy to
argue about. On a small software development
installation (Tl 990 with 256kb memory and five
screens) the generator required about three minutes
(elapsed) for a 500 line director file and a 1500 line
skeleton. This compared favourably with the compile
time of the generated program, despite the ineffic-
iencies of COBOL string-handling;

— subsequent amendments to a skeleton must be made
with rather more care than with a Phase 2 skeleton. It
is necessary to generate and test first that program
for which the change is required, then a range of sam-
ple programs appropriate to the population of the
progeny, then all of the progeny;

— in addition to the normal ‘where used’ capabilities
needed for copyfiles, datafiles and subprograms, the
use of the skeletons themselves must be monitored.
This is most easily achieved if the invocation of the
skeleton is controlled from the director file itself;

— the use of an existing skeleton for a new project often
involves additional investment. (Typically the original
version assumed only one record type per file, while
the new project must handle two or more.) Gener-
ally it seems better to allow skeletons to proliferate
rather than invest too much too soon chasing the
chimera of ‘truly general’ master programs;

— the method decreases the creativity involved in appli-
cations programming. Other sources of programmer

The Australian Computer Journal, Vol. 14, No. 2, May 1982

Masks, Reports

Figure 4. Sophisticated Program-Generator.

job satisfaction must be substituted for that lost if
low morale and high turnover aren’t to rob the instal-
lation of the potential productivity gains;

— a stratification, or at least segmentation, of program-
ming staff results, with differentiated education, ex-
perience and even psychological profiles. Given that
the existing distinctions between systems and appli-
cations programming groups can result in friction,
the addition of a ‘methods programming’ group could
be an unwelcome additional ingredient in the political
cauldron; and yet most systems programming staff
are ill-suited to the work involved because of its
strong applications orientation;

— the method invites the naive application of an inade-
quate tool to a different or more subtle problem. It is
essential that in seeking productivity improvement we
do not force development staff into under-investment
in the problem comprehension and design phases and
thereby trivialising their appreciation of the
application.

PHASE 4 - SOPHISTICATED PROGRAM GENERATORS
The ‘merge-and-replace’ type of generator remains

trapped within the conceptual boundaries of its host lang-
uage. There are two very important and related limitations
that can be overcome only if the framework of the gener-
ation run is changed.

The sequential processing of a single skeleton has the
result that a skeleton must resemble the program that is to
be generated, with the exception that some symbols appear
which would not be valid input to a compiler, some_
denoting locations for insertion, others awaiting replace-
ment: the skeleton and the generated program are syn-
chronous.

The other limitation is that in a family of skeletons
there will be a considerable amount of redundancy. In par-
ticular, file definition and file access routines will appear
not merely in each skeleton, but even several times in each.
It is desirable that code which is common to multiple skele-
tons be stored once only, in an independent sub-skeleton.

The instance of file handling is particularly impor-

51

Program Generators

.PROG-DEM01, AUTHOR=ROGER ADD TESTMAC, 5, 2, N

generates: invokes this Macro:

000100 IDENTIFICATION DIVISION. 01000064nnn9nn*************************** n000300 PROGRAM-ID. DEMOI 0I0OOO66

000400 AUTHOR. ROGER. 01000068
000500/ 03000003
000600 ENVIRONMENT DIVISION. 01000081
000700************************* 01000082
000800 CONFIGURATION SECTION. 01000083
000900 SOURCE-COMPUTER. PRIME 550. 01000085
001000 OBJECT-COMPUTER. SVCOR585. 01000086
001100 INPUT-OUTPUT SECTION. 23 DELTA
001200 FILE-CONTROL. 23 DELTA
001300 l-O-CONTROL. 23 DELTA
001400/ 03000005
001500 DATA DIVISION. 23 DELTA
001600 FILE SECTION. 23 DELTA
001700/ 03000007
001800*-- 23 DELTA
001900 WORKING-STORAGE SECTION. 23 DELTA
002000/ 03000028
002100*-- 23 DELTA
002200 PROCEDURE DIVISION. 23 DELTA
002300 DX-MAIN SECTION. 23 DELTA
002400 O-PROG. 23 DELTA
002500 P-PROG. 23 DELTA
002600 C-PROG. 02 DELTA
002700 STOP-RUN. 02 DELTA
002800 STOP RUN. 01000131

Figure 5. The Minimum-Complexity Program.

. PROG-DEM02, AUTHOR= ROGER

. SL=P-PROG
DISPLAY "HELLO, USER! WHAT’S YOUR NAME?”.
ACCEPT WS-NAME.
DISPLAY "CONGRATULATIONS ” WS-NAME ”!!!”.
DISPLAY "YOUR PROGRAM WORKS ALREADY!”.

. SL=WORK01
01 WS-NAME PICX(OB).

Figure 6. A Slightly More Complicated Program.

tant, because yet a further level of abstraction exists. In
order to facilitiate the portability of applications software
between differing machines, compilers, and file handling
environments, it is necessary to store those parts of the
program which are environment-dependent in separate
‘sub-sub-skeletons’ which can be exchanged in order to gen-
erate a new version of the application to run on, say, an
interstate branch’s much smaller and perhaps separately
sourced installation. (The same problem occurs in relation
to the handling of on-line terminals, although defining the
interface between the logical and the physical sub-
skeletons is made much more difficult by the absence of
de facto standards.) See Clarke (1982b, 1982c) for further
discussion of such matters.

It is not difficult to restructure the simple generator
described in the previous section to include invocations of
sub-skeletons, depending on some condition in the director
file or the main skeleton. The problem is that the syn-
chronisation between skeleton (s) and generated program is
destroyed. In the case of a file handling sub-skeleton, the
sub-skeleton will endeavour to insert code in a location (say
the file access routines), while the skeleton still contains
code that must be inserted at an earlier location.

The requirement is, then, that the director file be
read sequentially, resulting in invocations of sub-skeletons,
and the ‘assembling’ of an output file. The output file must

**PDL*8112311159/TESTMAC/02/ TEST-MACRO
. *
. * Converts an alphanumeric field with contents in the form
. * ‘9999.99’ into a numeric field of the form 9999V99
. *
. * The number of digits is freely-choosable.
. *
. * Parameters: 01 — number of whole-digits
. * 02 — number of decimal-digits
. * 03 — whether a subroutine

is to be created (Y/N)
*

SL=WORK01
01 WS-ALPHANUM-#01 #02.

05 WS-AN-#01 #02-WHOLE
05 FILLER
05 WS-AN- #01 #02-DECIMAL

01 WS-NUM- #01 #02.
05 WS-N- #01 #02-WHOLE
05 WS-N- #01 #02-DECIMAL

01 WS-NUM- #01 #02REDEF

PIC 9(#01).
PICX.
PIC 9(#02).

PIC 9(#01).
PIC 9(#02).
REDEFINES WS-NUM-
#01 #02 PIC 9(#01)
V9(#02).

. IF-03. EQ. Y

. SL=SUBROUTINES
CONV-AN- #01 #02.

MOVE WS-AN- #01 #02-WHOLE TOWS-N-#01 #02-
WHOLE.

MOVE WS-AN-#01 #02-DECIMAL TO WS-N- #01 #02-
DECIMAL.

CONV-AN-#01 #02-EXIT. EXIT.

. 1 FEND

to generate this code:

WORKING-STORAGE SECTION.

0l’ WS-ALPHANUM-52.
05 WS-AN-52-WHOLE PIC 9(5).
05 FILLER PIC X.
05 WS-AN-52-DECIM AL PIC 9(2).

01 WS-NUM-52.
05 WS-N-52-WHOLE PIC 9(5).
05 WS-N-5 2-DECIMAL pic 9(2).

01 WS-NUM-52REDEF REDEFINES WS-NUM-52
PIC 9(5)V9(2).

Figure 7. Macro-Calls.

be addressable at multiple points, not merely at the
(current) next record (a partitioned or segmented sequen-
tial file as distinct from purely sequential). For flexibility
sub-skeletons should be able to be invoked conditionally,
and iteration, nesting and even recursion should be possible.
In addition parameter passing between different elements
must be facilitated. Such a generator is complex, requiring
modular construction for reliability, maintainability and ex-
tendability, and involving the investment of man-years of
effort. Figure 4 depicts such a generator.

Examples of products which offer at least some of
the requirements are: CPG, an American product of the late
1970’s; CL/1, an Australian product released in 1979,
MANTIS from CINCOM (IBM-specific, 1979); NoCode, an
American product (1980); and the cutely-named ‘The Last
One’, a UK product (1981). ADR’s IDEAL is overdue for
release. Philips’ PET/X1150 development-machine incor-
porates generator-elements.

52 The Australian Computer Journal, Vol. 74, No. 2, May 1982

Program Generators

TABLE 1. Properties of Program-Generators.

The Product Provided
— capable of immediate use without initial investment by the user
— based on an interpretative language so as to be portable between

software environments and machines
— includes standard macros for common functions which can serve

as a starting point for the integration of the product into the
user’s particular environment

— is consistent with and capable of operation in parallel with other
development environments, and in particular with the mainten-
ance of existing applications by conventional methods

— is suitably documented and the documentation is well indexed
— education and introductory documentation are provided
— maintenance and support are provided
— on-going development of the product is guaranteed
— version control and upwards compatibility are assured

The Macro-Language
— standard macros are under user control
— additional macros can be written by the user
— offers DO-verb, and complex conditionals or decision table
— DO-verb and conditionals are nestable to an adequate depth
— offers computational and string handling capabilities
— capable of passing parameters
— parameters may be local or global, and 'typed’
— simple file reading capabilities
— additional locations can be defined
— all locations are accessible by any macro

Program-structure skeletons
— ability to generate the vast majority of program structures with

simple parameterised invocations
— all control code for level breaks should be generated
— appropriate locations for insertion of program specific code
— the resulting code should be suitably modular and structured

(within the constraints of the generated language)
— ability to specify exotic program structures in a convenient,

auditable, powerful but compilable language

Outputs
— generates an industry standard language(s)
— is sufficiently flexible that variants within the standard, not-

quite-standard and add-on compiler features can be handled
— generates code that is consistent in style with the prevailing

installation standards no matter from which skeletons/macros it
may be generated. This is important during the first years follow-
ing its installation, since maintenance may be performed on the
generated programs rather than the original source

— the code generated by all methods is consistent in apppearance
— generates documentation as an integral part of the code
— generates a where-used listing for macros/skeletons
— can generate skeleton JCL for testing and production purposes

Use
— simple to use for simple programs, in particular a simple report

generator syntax such that trainees can quickly become produc-
tive and experience early positive feedback

— powerful for larger and more complex programs such that the
productivity of experienced staff is significantly enhanced

— consistency of use for each type of standard program (i.e. the
preparation of simple print programs, simple batch, complex
batch, on-line enquiry,data capture and update programs should
not differ more than is necessary)

— ‘naturalness’ of the language and its syntax, rather than obscure
mathematical script

— completeness of syntax validation
— clarity of error messages
— accessibility of the documentation for reference purposes
— the capability to reflect user modifications and extensions

Mode of Processing
— can access multiple macros, including

many level nesting and perhaps also recursion
— adequately efficient in its usage of machine resources (run time,

file access, main storage)
— written in reentrant code and is actually shareable by many users
— capable of concurrent execution by an effectively unlimited

number of users, e.g. suitably qualified workfile names, macros
accessed in read-only mode

— allows definition of reference libraries and documentation
options at run time

interface to its Environment
— ability to mesh with techniques used within the organisation

(structured analysis, structured design, Relational Analysis,
HIPO, structograms a la Nassi and Schneiderman, decision tables
Jackson or Warnier Program Design Methodology, structured
programming, etc.)

— interface with Data Dictionary software
— interface with formalised system requirements and system design

utilities
— interface with screen definition facilities
— interface with report layout facilities
— interface with project planning and control
— interface with the testing and debugging facilities
— independence from its host machine, i.e. runs on many machines

(and in principle on any machine)
— independence from its target machine(s)
— independence from supplier specific environmental software

(operating system, file handler/database, languages, on-iine
monitor, data communications monitor, etc.)

The author has experience of a Swiss product,
DELTA (see Clarke, 1982b, 1982c), which fulfils the
requirements. It has enjoyed considerable success in
German-speaking areas, and is available in both Britain and
Australia. It had the market to itself following its market
release in 1976, but a small flood of competitors is lining
up to do battle. The generator package comprises an inter-
preter, a set of ‘processors’ (providing efficient perfor-
mance of the most common facilities such as the basic
program shell, and decision table and pseudo-code inter-
pretation), a range of standard macros (providing file
handling, a report generator, etc) and a macro language to
enable the writing of further macros.

The distinction between a skeleton and a macro is
important. A skeleton contains no control structures; the
director file drives the run, but the generator itself performs
all the decision-making. In the case of a macro the stored
code is not just passive, but contains selection and iteration
decisions, based on parameters supplied in the director
file, and additional variables computed during the
generation run.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

This language is available to the software developer,
so that he can go further than merely amending existing
macros: he can also develop his own to match the require-
ments of the installation. The following examples of the
use of a Phase 4 Generator are based on DELTA, because
of the author’s familiarity with that product, but also be-
cause it embraces all of the important concepts and mech-
anisms.

EXAMPLES
Figure 5 depicts the preparation of the minimum

complexity program. The basic Processor is invoked using
the command .PROG; a variety of optional parameters
may be set. The result is a program shell containing the
minimum set of commands consistent with the particular
target compiler. The precise content of the generated shell
is determined by macros supplied by the vendor but fully
under the using organisation’s control.

In addition so-called ‘locations’ are created into
which lines of high level language code can be inserted.
Each location is accessible in ‘open-extend’ mode, i.e. lines

53

Program Generators

. PROG-CUST, AUTHOR ROGER, WRITTEN JUL 81

. SL=REMARKS
*
* ON-LINE DEMONSTRATION-PROGRAM (CUSTOMER

FILE-MAINTENANCE)

*

. * Create program-structure:
*

! ADD OLSTRUC, 1, (DSP, CRE, AMD, DEL),-
(MSKCUST1, MSKCUST2)

. *

. *

. * Validation-code:

. *
SL=VAL-01 -DEL

. *

. * Delete prohibited if current or previous year’s

. * Sales are other then zero:

. *
IF T01-SLSYTC = ZERO
AND T01-SLSYTP = ZERO

NEXT SENTENCE
ELSE

. ADD VALERROR, 905, , SLSYTC

. *

. * Define Customer Logical-Record:

. *
!ad d l r -c u , UPDATE-ONPLACE, 1
*

The above depends on data definition files (which are the
responsibility of the applications team), about 10 standard
macros, 5 additional macros written and maintained by the
installation standards team, and about 10 macros which
generate the program structure and screen handling.

Figure 8. An On-Line Program Using DELTA.

are loaded successively into that slot. The process is directly
analogous with a box of 80 column cards in which the per-
missible insertion points are marked with thick cardboard.
Each new card (including new markers) can be inserted im-
mediately before any marker. Figure 5 in itself cleanly
compilable, although its execution would cause little
excitement. Very slightly more interest would be aroused
by the program generated by Figure 6, in which two loca-
tions have been used, that for basic processing, and the
basic working storage location.

Figure 7 illustrates the next conceptual step, the in-
vocation of macros. Great power can be achieved in the use
of pre-written code through the nesting of macros. For
example the author uses a single line invocation (together
with separately prepared mask definitions) to generate an
on-line update program with inquiry, creation, amendment
and deletion capabilities, any number of masks and some
30 locations into which the more complex validation and
file handling code can be inserted (Figure 8). The addition-
al coding is also strongly supported by additional macros.

A hierarchy of self-supplied macros is one of a range
of ways in which the program structure can be generated.
A processor is supplied for normal batch processing pro-
grams, another generates structures in a manner consistent
with Jackson’s Program Design Methodology, and an inter-
preter is available to generate more exotic forms from a
structured ‘pseudo-code’.

A number of processors are also supplied as part of
the basic product to achieve run time efficiency in the
handling of certain standard functions. Chief among these

is the File Processor which, with the aid of one or more
macros generates all code necessary for definition of and
access to each file. It also includes facilities for integrating
the file processing into the program structure. In COBOL
this involves entries into at least the following locations:
SELECT, FD, RECORD-DESCRIPTION, OPEN, CLOSE,
File handling Subroutines and the calling of the file access
routine(s). Macros for the various file types are supplied,
and can be used in that form or extended to suit the user’s
particular requirements.

A further point of importance about Figure 8 is the
machine-independence of the DELTA source file. It was
written and tested on a PRIME 550, then re-generated on
that machine in the form appropriate for a SYCOR (Data
100) Model 585. Differences between the file definition,
file handling and (very differently conceived) screen
handling methods were catered for with little difficulty.
Implementation of precisely that program on further mach-
ines involves the preparation of file and screen macros
appropriate to the new target machine and/or target en-
vironment. Clarke (1982b) discusses this example at greater
length.

PROPERTIES OF PROGRAM GENERATORS
Table 1 contains a list of factors to be considered

when assessing alternative products or designing one’s own.
Since this article is tutorial rather than analytical this point
is not discussed further.

IMPACT OF PROGRAM GENERATORS
The benefits brought by a sophisticated program gen-

erator include the faster development of cleaner products,
quicker and more reliable maintenance and enhancement,
the opportunity for genuinely portable applications, and
shorter lead times for trainees.

The development process, the organisation of
development teams, and the organisation and operation of
the supporting ‘methods programming’ team are signifi-
cantly affected.

TOWARDS APPLICATION GENERATORS
The focus of this article, and indeed of the products

which it discusses, is the generation of independent
programs. The design of a collection of programs to fulfil
a complex of purposes is viewed as a separate exercise. In
order to generate an entire application from an application
specification, a logically complete and precise statement of
the requirements would be needed in a set of consistent
and compilable syntaxes. Implementation parameters (e.g.
the physical allocation of records and the gathering of func-
tions into programs) would also be required.

CONCLUSION
In the near future only specialist ‘methods pro-

grammers’ will deal at the level of detail of present high
level languages. The vast majority of commercial develop-
ment will be done by programmer coders using utilities to
capture the parameters for input to program generators.

In theperiod 1982-1987 many of these generators will
be machine specific, generating a special language code, and
be subject to myriad intended and unintended restrictions.
Later more of them will achieve substantial machine inde-
pendence and generate industry standard languages. Avery
few such second generation products are already on the
market.

54 The Australian Computer Journal, Vol. 14, No. 2, May 1982

Program Generators

Somewhat further in the future it seems reasonable
to anticipate effective application generators which will
operate on one or more system design languages to produce
executable code directly.

ACKNOWLEDGEMENT
The assistance of colleagues at Brodmann Software

Systeme AG, and of Herrn Peter Buchmann, Claude Reibel
and Dr. Reinhold Thurner of SODECON AG, the suppliers
of DELTA, in the preparation of this article is gratefully
acknowledged.

REFERENCES
ADR (1974a): Macro-Writing for the MetaCOBOL User, Doc Nr

P502M, Applied Data Research, Princeton, NJ.
ADR (1974b): Macro-Writing for the MetaCOBOL Specialist,

Doc Nr P5S1M, Applied Data Research, Princeton, N J.
CLARKE, R. (1982a): Editors for Software Development, Aust.

Comput. Bull,, 6, Feb 1982, pp. 21-25.
CLARKE, R. (1982b): Generating Self-Contained On-Line Pro-

grams Using DELTA; submitted to the Ninth Australian
Computer Conference, Hobart, August 1982.

CLARKE, R. (1982c): Generating Transaction-Oriented On-Line
Programs Using DELTA, submitted to the Aust. Comput.].

HAWRYSZKIEWYCZ, I.T. (1981): ‘Some Trends in System Design
Methodologies', Aust. Comput.)., 13, Feb. 1981, pp. 13-23.

WAITE, W.M. (1974): Implementing Software for Non-Numeric
Applications, Prentice-Hall, NJ.

BIBLIOGRAPHICAL NOTE
The author has been active in commercial data

processing since 1971 in functions ranging from systems
analysis and project-leadership through research into the
privacy implications of the information industry, to the
technology of software development. He has worked for
and with a variety of industrial, commercial and consulting
organisations, including more recently VA years with The
Stock Exchange, London, and three years with a software
house in Zurich. He completed an M.Comm. (Accounting
and Information Systems) in 1975 following nine years'
part-time study at the University of New South Wales.

The Australian Computer journal, Vol. 74, No. 2, May 1982 55

