
LIABILITY ISSUES

WHO IS LIABLE FOR SOFTWARE ERRORS?
PROPOSED NEW PRODUCT LIABILITY LAW IN AUSTRALIA

Fixing liability for the consequences of defective
software is a very difficult matter for the law to deal
with. Software has many functions and applications
and is frequently dependent upon the operation of
other technology to discharge its task correctly and
efficiently. What steps can a legislature take in
introducing product liability legislation for software
to ensure that the legal terminology accurately
defines the technical situation so as to categorise
software correctly and attach liability accordingly.
Roger Clarke develops these ideas reporting on a
proposed new product liability law in Australia.
Michael Scott then examines some liability issues in
medicine with regard to patient care systems.

When a person suffers as a result of 'computer error', does
the injured party have the ability to seek redress from the
person or organisation responsible?
Simple though the question may seem, there is no
straightforward answer to it. Depending on the circumstances,
there are several heads of law under which an action might
be initiated. The most common of these are contract law
(which applies only to the parties to a contract) and the tort
of negligence (under which everyone has a limited duty of
care to everyone else).
Another possibility is 'product liability law', which imposes
some responsibilities on the seller and/or the original
manufacturer of a product. The Commonwealth Attorney-
General has requested the Australian Law Reform Commission
(ALRC) to study the state of product liability law in Australia,
and recommend changes. Some key aspects of the
Commission's proposals are outlined in Exhibit 1.

EXHIBIT 1: THE PROPOSED NEW PRODUCT LIABILITY
LAW
1. The Australian Law Reform Commission proposed that,
as a general principle, losses caused by products should
be reflected in the price of the goods, to the extent that
those losses are a consequence of the activity of a person
in the chain of production. A new regime is needed to
give effect to that principle probably by passing a new
Commonwealth statute.
2. Liability is to be imposed on the "produca'on enterprise" (the
chain of production) for "loss or damage" caused by "goods"
provided that those goods can be shown to have been built
in an "unsafe" (or perhaps an 'unacceptable~ condition, and
that that condition kaused' the loss or damage
3. The "production enterprise" consists of all persons
"'engaged in the process of producing the goods and
putting them into commercial circulation". Since the
"production enterprise" is generally not a legal person, a
"primary defendant" is defined, who the affected party may
sue. In general this is the retailer.
4. "Goods" are distinguished from "services', but no clear
definition is offered. Discussion is provided concerning the
meanings of "causation~ "unsafe" and "unacceptable'. The
onus is on the "primary defendant" to show that the
condition causing the harm was not in existence at the
time the goods left the production enterprise, and/or that,

despite the existence of that condition, the goods were
safe.
5. The 'primary defendant" has the right to recover from
other participants in the "production enterprise" and from
persons outside the enterprise whose activities caused or
contributed to the harm.
6. "Loss or damage" of the following kinds is to be
compensated:
- personal injury;
- property damage;
- consequential economic and non-economic loss (i.e.
arising from personal injury or property damage); and
- "pure" economic loss (i.e. which occurs without any injury
or damage), which is suffered by the owner of the goods
Not to be compensated are:
- pure economic loss suffered by third parties; and
- pure non-economic loss suffered by any party.
Reference: Law Reform Commission (Australia)

Discussion Paper No.34: 'Product
Uability' August 1988

The existing and any amended law would undoubtedly apply
to computer hardware. But is computer software a product
for the purposes of product liability law? The current law is
sufficiently unclear that different lawyers might well give
different answers, for the very good reason that, if someone
felt moved to finance a test case, different judges might well
give different judgements
The term 'goods' is used in the existing Trade Practices Act
1974, but is not defined. The intention of the ALRC's new
proposals is that it apply to a complete product (i.e. including
subsidiary components) supplies from a "production
enterprise'to some party who was, at least potentially, a user
of the product. It would exclude services, but would include
products supplied under a contract for services.
This article assesses whether, under the new law the ALRC
proposes, any circumstances would exist under which
software would be goods, and therefore be subject to product
liability law. It is useful to look firstly at the rather simpler
question of whether data can be 'goods'.

LIABILITY FOR DAMAGE CAUSED BY DATA
Data may be sold as a product. A book is a good, but the
text within it, and the words and letters that make up the
text, are neither a good, nor even a component of the "whole
product'. The rationale for this appears to be that data is inert,
and cannot play a role in the function that the good performs.
In the same manner, it would appear that both the physical
device (such as a disk-drive or cassette-player) and the physical
medium on which data is delivered (such as magnetic disk
or cassette, or CD-ROM) are goods. Therefore harm arising
from a defect in the equipment or medium would be subject
to product liability law. However, data stored on such media
is not deemed to be a component of the 'complete product'.
Data such as a dictionary, encyclopaedia or mailing list might
therefore be thought of by seller and buyer as a product, but
it would not be subject to product liability law.
The owners of public access databases (such as the I.R Sharp
collection of economic data housed in Toronto, or the

28

MAY - JUNE THE COMPUTER LAW AND SECURITY REPORT [1989-90] 1 CLSR

Australian legal database CLIRS) would therefore not be
subject to product liability law where the data is distributed
on optical disks. (If those databases are accessed remotely
by terminal or PC, their owners are also not liable, in this case
because data access is of the nature of a service, not a good).
So, in general, it appears that data is not subject to product
liability law. This has potential implications for software, which
are discussed later.

'SOFTWARE' AS GOODS
The term "software" is used ambiguously. At its most abstract,
it refers to a set of instructions intended to cause a computing
device to perform particular functions. However, it is also used
in a more restrictive (and original) sense, to refer to only such
sets of instructions as are stored externally to, and
independently of, the machine they are used in.
In order to appreciate whether software would be subject to
the new product liability law, it is necessary to consider firstly
software which is intrinsic to a computer, and then software
which is loaded into a computer from an external medium.

EXHIBIT 2: CLASSES OF SOFTWARE
• intrinsic software

• embedded in hardware (hardware or VLSI)
• embedded in firmware (ROMS)

• inserted in the computer at time of purchase
• inserted in. the computer later, as optional extras

• extrinsic software
(stored on and loaded from an external medium)

LIABILITY FOR HARM ARISING FROM
INTRINSIC SOFTWARE
By "intrinsic software', I mean software which can be easily
argued to be a component of a "complete product'. There
are several different classes of 'intrinsic software'.
The first of these is software which is embedded in hardware.
Early models of computers in the 1940's and 1950's featured
'hard-wired" programs, and the characteristic has reappeared
in the 1980's in the form of VLSI (Very Large Scale Integration).
In effect, the potentially general-purpose computer has been
wired in the factory to perform only certain very specific
functions. This is common in appliances such as washing
machines and ovens, and in electronic ignitions in cars.
The second class is software which is embedded in firmware.
This refers to a popular kind of computer architecture in which
a general-purpose computer is provided with special-purpose
capabilities by including pre-programmed ROMs (Read-Only
Memory modules). The result is that the product delivered
from the computer factory has certain functions built-in, but
is still capable of being used for a wide variety of purposes,
simply by loading further programs from external media like
cassettes or disks. A common example is the BASIC interpreter
which is embedded in the ROMs of many micros of the late
1970's and 1980's.
The third class of intrinsic software is programs which are
embedded in optional-extra ROMs, i.e. Read-Only Memory
modules which may be purchased separately from a
computer, and added to it later. Such optional-extra ROMs
are commonly referred to as "add-on boards" in the IBM PC
arena, and have been widely used to achieve follow-on sales
in the hobby-computer market (Ataris and Commodores).
Goods containing intrinsic software appear to be generally
subject to product liability law. In the first two cases, the good
is the complete computer, including software, as delivered
by the retailer. If the retailer assembled the product, he may
have to carry the majority of the liability, but if the product

was essentially complete when it left the factory, then the
main risk would be borne by the manufacturer.
The Commission's proposals appear to achieve their intention
of ensuring that harm arising from unsafe software is paid
for by the "production enterprise; i.e. the IT industry.
In the third case, the computer is one good and the optional-
extra ROM is another. Even here, the Commission's proposals
appear on the surface to achieve their objectives, although
the situation is more complex, and this may provide retailers
with some additional scope for avoiding liability.
Disputes often arise between the suppliers of the various
elements of a complete system, with each being able to
demonstrate that their own product independently of the
others, performs according to specifications (and therefore,
in the Commission's terms, "safely'and "acceptably~. In many
such cases it is economically impracticable (sometimes
perhaps even technically impossible) to prove which supplier
is at fault.
It is unclear how the Commission's proposals would overcome
such an impasse. Both potential "primary defendants" (in
general the retailers of the computer and of the separately
purchased software) may successfully show that there was
no characteristic of either good which caused the loss or
damage, and the aggrieved party may be unable to find
anyone from whom he can gain compensation. (Although
it provides little comfort, this weakness in the Commission's
proposals would appear to apply more generally than only
to software).

LIABILITY FOR HARM ARISING FROM
EXTRINSIC SOFTWARE
There are many instances in which software is genuinely "soft',
in the sense of not being part of the machine, but instead
being located from an external medium into the computer's
high-speed main memory (in recent years often called RAM
- Random Access Memory).
To date, economic factors have almost always dictated that
main memory is limited in size and ephemeral rather than
persistent (i.e. its contents are lost when electric power is
removed). It is therefore generally necessary to re-load the
software from the external medium on each occasion it is
required.
It is clear that the external medium on which such software
is stored is a good, and product liability would apply to it.
However, the software does not appear to be a good in its
own right, because while it is on the medium, it is as inert
as data on a diskette or text in a book. The combination of
medium-and-contents does not appear to be a "complete
product', because the contents do not enable the medium
to do anything - they enable an entirely different good (a
computer) to perform some particular function.
If this line of reasoning is right, then extrinsic software may
not be subject to product liability law, even if it is unsafe or
unacceptable. So a software manufacturer would be exposed
to public liability risks if the software is intrinsic, but not if
it is extrinsic. Hence, depending on the medium on which
the software is delivered by the retailer, he may not be liable.
This seems anomalous, particularly if the software
manufacturer has no control over the medium on which the
software is delivered to the eventual consumer.
If the ALRC wishes to deal comprehensively with computer
software, then a number of further factors need to be
considered (see Exhibit 3).

29

MAY - JUNE TFIE COMPUTER LAW AND SECURITY REPORT [1989-90] 1 CLSR

EXHIBIT 3: OTHER POTENTIALLY RELEVANT FACTORS
• purchase with the computer vs. separate purchase
• pre-packaged vs. custombuilt software
• active (real-time) vs. human-mediated systems
• systems vs. utility vs. application software
• software form

One is whether the software is purchased with the hardware
or separately from it. Where the software is purchased with the
hardware, the software might be argued to be a component
of the "complete product'. If that argument were successful,
then it would be subject to product liability law in the same
way as intrinsic software. Where software is purchased
separately, such an argument is far more difficult. If this
distinction were intentionally made, or arose from case law, it
would create an incentive for suppliers to contrive to deliver
software separately from hardware, in order to avoid the risk
of public liability.
Another factor is whether the software is pre-packaged or
custom-built. Pre-packaged software might be argued to be a
product, and therefore to have at least some of the
characteristics of a good (although perhaps not enough of them
for the courts to treat it as such). With custom-built software,
it is much easier to argue instead that the software is of the
nature of a service. (In the not infrequent case of custom-built
software being subsequently packaged for sale to further clients,
the "productisatior(of the software would presumably not affect
the status of the first installation). A third factor is whether the
software directly causes physical action, or its output is mediated
by a human. In active systems (e.g. real-time control of chemical
processes and environments, and navigation systems), decision-
making on matters of real consequence is delegated to an
artefact. Since the scope for harm may be substantial, it might
be particularly desirable for the risk to be borne by the
"production enterprise', and explicitly costed into the product(s).
In passive systems some person uses the output, and existing
laws, particularly negligence, may be sufficient to ensure that
the software manufacturer has an interest in product quality.
It is conventional to distinguish between 'system software" and
"application software'. System software is concerned with the
operation of the machine, while application software performs
specific functions directly understandable to and desired by the
user. A third category, which might be termed "utility software"
is emerging, to contain products which have some characteristics
of both. In the past, system software was generally purchased
from the equipment supplier, and application software more
commonly from a third party, but the patterns of supply are
now far more varied. I do not believe that these classifications
are of much assistance in the area of product liability law.

SOFTWARE F O R M
Another very important factor is the rich variety of different
forms in which software can exist. Exhibit 4 provides a
classification scheme.

EXHIBIT 4: SOFTWARE FORMS
Form of the Source-Code
• expressed as instructions (imperative mood)
• directly executable machine-language
• coded machine-language (hex or octal)
• assembly language
• algorithmic or procedural language (or '3GL')
• expressed as data (descriptive mode)
• problem definition or requirement (e.g. '4GL')
• problem-domain definition (e.g. production-rules)
• empirical knowledge (e.g. in connectionist networks)

~ype of Code ~anslation(s)
• isomorphic, 1-to-1 or 1-to-many

(e.g. assemblers and macro-assemblers)
vs. non-isomorphic (e.g. compilers)

• one-time, usually in advance (e.g. assemblers, compilers)
vs, execution-time (e.g, interpreters)

Form of Object Code
• expressed as directly executable instructions
• expressed as data which require execution-time

translation
• rules, needing an expert systems inference engine
• fully interpreted source-code, needing an interpreter
• parameter tables, needing a run-time table processor
• pcode, needing a run-time interpreter

At the point at which software is used, it may exist in directly-
executable form (i.e. machine-language, a succession of
groups of binary-valued variables which can be successively
loaded into a processor's instruction register). However, there
are other forms in which software may exist immediately prior
to its use. These will be discussed shortly.
Only a tiny proportion of software is created in machine-code.
It is usually expressed by a human programmer in some other
language, in what is generally referred to as the program's
"source-code'. Conventional languages comprise a series of
commands, expressed in the imperative mood, as instructions
for a dumb clerk. Some of these languages are very close
to machine-language (e.g. hex, assembler and macro-
assembler), while others are much closer to patterns of formal
human communications ('3rd generation" algorithmic or
procedural languages).
However, some languages support moods other than the
imperative, and may even preclude imperative expressions.
Some of these languages are intended to allow a programmer
to describe the characteristics of entities and the relationships
between them (schema languages), and some to describe the
requirements of the program (sometimes unhelpfully called
'non-procedural" or "4th generation' languages). Others are
concerned with still more abstract issues, such as the
description of a whole problem-domain, rather than merely
a specific problem (such as expert systems shells), or the
capture of raw, empirical knowledge, from which a description
of a problem domain might be derived (this is the realm of
the emerging neural or connectionist networks).
In order to be used, source-code in any language other than
machine-code must be translated. This is generally performed
by a piece of software written especially for the purpose. The
output of the translation process is referred to as bbject-code~
In most cases there is only a single step in the translation
process, although there are circumstances in which a
succession of translations through intermediate languages is
advantageous.
(It should be noted that some specialist dictionaries (e.g.
Penguin Dictionary~of Computers, 1985) use software in a
very restrictive sense, whereby it must comprise instructions.
This would exclude both source-code and object-code that
are expressed in the more abstract languages. It is more useful
to apply the term "software" generically, to refer to all
programs whatever their form, provided that they are capable,
in practice, of causing a computer to perform a specified or
specifiable function. (See further, the glossary of terms,
to be found in Appendix I.)
The question which remains to be addressed is whether
different software forms might be treated differently for the
purposes of product liability law.

30

MAY - JUNE THE COMPUTER LAW AND SECURITY REPORT [1989-90] 1 C,LSR

SOFTWARE AS DATA
Many kinds of software contain data, e.g. some payroll
systems contain tax rates and tax thresholds. In the class of
software popularly referred to as 'expert sj~tems" (more
precisely, software based on production-rules), data is not
merely incidental, but plays a much more central role.
The rules which make up expert systems software may be
quite reasonably depicted as data, which needs to be
interpreted (in conjunction with additional data provided at
run-time) by a particular kind of general-purpose program
commonly called an "inference engine'.
Expert Systems are not the only kind of software which
exhibits data-like characteristics. A great deal of software is
delivered to the target computer in the form of directly
executable instructions. However, it is quite feasible for
software to be delivered as source-code, which the user
organisation must translate into directly executable code,
which is then stored for later use. The most problematical
case is where software is delivered in a form which requires
translation every time it is used (see Exhibit 4).
One of the major variants of such translators in the
"interpreter" for a "fully interpreted language" (such as most
BASICs and interactive SQLs, as well as expert systems
inference engines). Such an interpreter performs substantial
translation functions in order to generate directly executable
instructions and pass them to the processor.
Another kind of execution-time translator is a "run-time table
processor'. This uses parameters supplied by the programmer
to customise prepared skeletons or templates, and so pass
directly executable instructions to the processor. This approach
is used in some so-called application generators and 4GLs.
A third variant is a 'run-time interpreter" which performs far
simpler translation of instructions expressed in "machine-code-
like" instructions (commonly called pcode or pseudo-code).
The case could be easily argued before a court that software
delivered in a form which requires the operation of a run-
time translator does not comprise instructions, but merely
inert data. Since data are not subject to product liability law,
such software would also not be subject to product liability
law.
Clearly, if software delivered in directly-executable form were
to be subject to product liability law, and software delivered
in a form requiring run-time translation were not, an incentive
would be created to deliver in the latter form. It is already
fairly common for extrinsic software to be delivered in a form
requiring run-time translation. This may well become the
norm, at least for application software, as processor power
ceases to be a significant constraint, and software
manufacturers strive to increase their potential market by
delivering portable products.
To date, it has been less common for intrinsic software to
be delivered in a form requiring run-time translation. However,
if there were an incentive to deliver software in that form,
then it would not cost manufacturers very much to change
their product delivery strategy.

SO CAN WE KNOW W H O IS LIABLE FOR
SOFTWARE ERRORS?
There are arguments both for and against software being
made subject to product liability law. The software industry
would be likely to prefer not to have to carry the risk and

pay the insurance costs that go with it. Consumers (both
corporate and human) might be expected to prefer the
reverse. The worst possible alternative is for the law to remain
unclear. If this occurs, consumers and suppliers are forced into
expensive litigation, a process in which all sides lose except
the lawyers.
It is possible that, depending on the precise wording chosen
by legislative draftsmen, and on the interpretations of
language imposed by the courts, various forms of software
may be deemed to be, or not to be, subject to product liability
law. The main sources of difficulty would appear to be those
shown in Exhibit 5.

EXHIBIT 5: MAJOR DIFFICULTIES
Circumstances

• intrinsic software which
is supplied by someone
other than the hardware
supplier

Reason
determination of
responsibility for a
problem which arises
from neither in isolation,
but only from both
together

• extrinsic software when supplied, the
software is inert data,
and therefore not a
good under product
liability law

• software delivered in a
form which is not
directly executable,
but requires run-time
translation

when supplied, the
software is inert data,
and therefore not a
good under product
liability law

If the analysis in this paper is correct, then the only software
which would be subject to product liability law would be
intrinsic software supplied with the hardware in directly-
executable form.
The process of establishing whether, in law, any such analysis
is correct, is fraught with danger and expense. This author's
case study of the understanding of information technology
shown by Australian courts (The Case of the Wombat ROMs"
Comput. J., 31,1 February 1988) suggests that such basic
terms as 'translation" "language" and "instruction" are capable
of a wide variety of interpretations. It remains to be seen what
confusions such terms as "run-time interpreter', "pseudo-
code', "production-rule', "inference engine" and "neural
network" may excite.
The analysis undertaken in this paper suggests that it may
be very difficult for a law reform body, and much more so
a parliament, to appreciate how to create moderately clear
laws relating to software product liability. Moreover, any such
scheme might be easily frustrated by software manufacturers.

Roger Clarke
Reader in Information Systems and Head of the Department
of Commerce at the Australian National University. He
previously spent 17 years in information systems practice,
management and consulting. He is Chairman of the
Australian Computer Society's Economic, Legal and Social
Implications Committee.

31

MAY - JUNE THE COMPUTER LAW AND SECURITY REPORT 1 1 9 8 9 - 9 0] 1 CLSR

APPENDIX I

A WORKING GLOSSARY
It is recommended that readers not familiar with the terms
used in this paper consult reference works (such as the
Penguin Dictionary of Computers 1985") and standard texts.
The following informal glossary is intended only to assist
in interpretation, and steers well away from complexities,
and from problems such as ambiguous and inconsistent
usages. In particular, the term "language' is used with some
hesitancy, because the courts in any particular jurisdiction
may decline to recognise a machine-language and/or a
programming language as a language for the purposes of
that court, e.g. in the interpretation of a copyright statute.

• data are measurements, signals or symbols which
represent, describe or record some real world
phenomenon. Information is data which is relevant to a
decision-maker in the context of a particular decision

• hardware is the collective word for computers and their
ancillary or peripheral equipment. The central and
defining element of a computer is the processor. Input
devices enable data to be communicated to the processor,
and output devices enable processed data to be
communicated to human (and other) users

• the processor must have primary storage available to
it. Primary storage is of two types - that which can be
read and written whenever the program needs to do so
(commonly called random access memory - RAM) and
that which has had data pre-recorded in it in an
unchangeable form (read-only memory - ROM). Primary
storage is fast, but highly expensive and ephemeral, and
so secondary storage devices are used to store large
quantities of data for long periods. A storage device
writes data to and reads data from a storage medium.
Common secondary storage media include magnetic
disks and casse~es, and optical (laser) disks.

• software is a collective word for computer programs.
A computer program is a set of instructions written with
the intention of causing a computer to perform a
precisely defined procedure or function.

• in order actually to cause a particular machine to perform
that procedure or function, software must be expressed
in a particular form called machine-language
(sometimes referred to as executable or binary code, and
sometimes - misleadingly - as object code). Machine-
language is peculiar to, and hard-wired into, each family
of machines, and comprises a set of primitive terms called
its machine-instruction set

• software may be written directly in machine-language,
but it is generally more convenient and productive not
to do so. Instead, most software is written in any of a
variety of programming languages. These may be very
similar in form to machine-language (assembler or macro-
assembler languages), or designed for the convenience
of the developer rather than the machine (in particular,
algorithmic or procedural languages). The former require

the developer laboriously to convert a previously designed
problem-solution, whereas the latter support
programming in a form very close to the language in
which the problem-solver originally expressed the
problem-solution (e.g. the Fortran language is suitable for
problem-solutions involving formulae).
In addition to the long-standing assembler and
procedural languages, a number of others have been
designed to enable the developer to operate at a higher
level of abstraction than problem solutions. Some enable
the developer to focus not on the problem-solution, but
on the problem to be solved or function to be performed.
The solution or procedure is delegated to the machine.
These are often called fourth-generation or non-
procedural languages.
Others enable the developer to focus not on the problem,
but on the micro-world in which a class problem arise
(generally called a "problem-domain'), e.g. a country's
Immigration Act may be encapsulated using such a
language, and the resulting software can then be
consulted about many different matters regulated by that
statute. Not only the problem-solution, but also the
definition of the problem, is delegated to the machine.
Among this class are logic programming and declarative
languages. A development tool of this kind which
requires less formal computing science training is expert
systems shells, which enable problem-domain
descriptions to be provided as sets of rules or decision-
trees. At this stage in the development of Information
Technology, many such products are prototypes rather
than well-established products.
At a still more general (perhaps the ultimate) level of
abstraction, languages are emerging from the research
laboratories which will enable developers to, at least in
some circumstances, merely provide the machine with
empirical experience (say a set of cases and their
outcomes) and delegate even the definition of the
problem-domain on the machine. Research in this area
goes under the heading of rule induction,
connectionism and neural networking

where software is written in a language other than
machine-language, it cannot cause a machine to perform
the procedure or function until it has undergone
translation into machine-language. There may be several
translation steps via intermediate languages. The resulting
machine-language may then need to undergo a further
process called rink-editing, during which standard library
modules are combined with it.

Several different terms are used for translation, including
assembly (from a low-level assembler language) and
compilation (from a high-level procedural language). The
input to a translator is called source code, and the output
is called object code. In most cases the entire program
is translated in advance of its being used, but in some
cases the translation is undertaken instruction-by-
instruction immediately before the resulting code is
executed. In this case the translator is called an interpreter

32

