
Teleprocessing Monitors
and Program Structure
Roger Clarke*

This article discusses teleprocessing monitors, their impact on program-structure, and the
development of such programs using the DELTA program-generator package.

Key words and phrases: DELTA, online programming, program-generators, program-structure,
teleprocessing monitors, transaction processing.

CR categories: 4.12, 4.22, 4.31.

SCOPE OF THE ARTICLE
A previous article dealt with the preparation of ‘self-

contained’ online programs using the program-generator
package DELTA (Clarke, 1982b). These were defined as
dialogue programs running under an operating system spec
ifically designed for online or mixed online/batch opera
tion. In such an environment terminal-communication is
performed using inbuilt commands such as the ANSI
COBOL SEND and RECEIVE verbs or extensions to the
DISPLAY and ACCEPT verbs; or by CALLs to one or
more special subprograms which perform the physical
data transfer and then return control to the calling pro
gram in the normal manner.

This article deals with online programs of another
type, those which run as subprograms to a so-called TP
(Teleprocessing) Monitor or DC (Data Communications)
Monitor. Commercial products of this kind include IBM
CICS and the DC part of IMS/DC, the CINCOM product
for IBM and IBM-compatible systems ENVIRON-1, Uni-
vac’s TIP/CMS, Honeywell’s TDS and Burroughs GEMCOS.
The short form ‘TPM’ will be used in this article, and the
term ‘TP Program’ will refer to a program running under a
TPM.

The article will discuss the methods used to generate
TP Programs. In order to do this however some features of
TPMs must be first discussed. As the author has found few
references which discuss TPMs in a suitable and supplier
neutral manner, this preliminary discussion takes up a con
siderable part of the article.

MAIN MEMORY UTILISATION
A large installation is interacting with hundreds of

active terminals. Each requires space in memory for the
program it is communicating with, hence potentially vast
amounts of main memory are demanded. Effective manage
ment of main memory is discussed here in isolation from
the many other factors traded off by a multi-tasking
operating system.

A first measure to save space is to enable a program
to service more than one terminal. This is referred to as

Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted, provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.

‘multi-threading’, since each task ‘threads’ its way through
the maze independently from, and unaffected by the
others. This is only possible if the program is in ‘reentrant’
form, i.e. if all data that may vary is stored in a ‘variant’ or
‘data’ segment. The procedural segment need exist only
once in main memory and is referred to as ‘shared code’; a
data segment must exist for each active program. A COBOL
analogue to a reentrant program is a program in which no
variables are defined in the Working-Storage Section (only
in the Linkage Section), and Commands which result in the
generation of working areas are avoided — CALL, PER
FORM . . . VARYING and ALTER being the main candi
dates (PDV, 1979).

Another contribution is made by a virtual-storage
paging arrangement in which procedural and data seg
ments not currently in use may be unloaded onto secon
dary (drum/disc) storage and reloaded when next required.
This involves operating system overhead, but due to the
enormous speed of processors and main memory (of the
order of 10~6 seconds) compared with secondary storage
(2 x 10-2) and especially terminal operators (1 to 102
seconds — human real-time), considerable net savings can
be achieved. DP practitioners are recommended to Keedy
(1980) as a reference on virtual memory.

Yet another step is to reduce both the size of individ
ual programs and the amount of processing squandered in
administering paged-out segments. This is achieved by
requiring programs to ‘die’ immediately after communica
ting with the Operating System, rather than merely being
suspended pending the arrival of the next input. It can be
argued that even batch programs should be organised in this
way, although with most batch input coming from secon
dary storage the gains are likely to be far less than in the
case of online programs whose input comes from a rela
tively very slow human being.

Against this potential gain must be balanced the size
of the additional OS subsystem (the TPM) necessary to
administer these very short-lived programs, plus the addit
ional main and secondary memory management to enable
programs to pass common data to their successor or to
themselves in their forthcoming reincarnation. The net
effect can be (but not necessarily is) a considerable gain.
This is particularly so in the case of the originally batch
oriented OS which have had terminal-handling and virtual/
paging facilities progressively tacked on. Such (predomin
antly ‘mainframe’) OS are consequently somewhat less

*Xamax Consultancy Pty. Ltd., 20 Leichhardt St, Leichhardt, NSW, 2040. Manuscript received January 1982, revised September 1982.

The Australian Computer Journal, Voi. 14, No. 4, November 1982 143

Teleprocessing Monitors and Program Structure

efficient in managing main memory, and the benefits shown
by ephemeral programs appears correspondingly greater.

A primary factor stimulating the development of
TPMs was the conservation of scarce main memory resour
ces but a range of other factors were involved.

OTHER FACTORS LEADING TO TP-MONITORS
Centralised Terminal-Handling

The varying physical characteristics of terminals can
be catered for by a central subsystem, enabling application
programs to deal with a standardised ‘logical’ interface. This
is really an argument for a Terminal Control Program (TCP)
and is equally applicable to environments in which online
programs are self-contained.

Centralised Formal Editting of Input Data
‘Automatic’ checking of the appropriateness of data

in each field can be performed by the TPM (or for that
matter by the TCP).

Optimised Data Stream Transmission
It can be important to keep line traffic to a mini

mum, especially in highly dispersed networks. A significant
contribution can be made by a routine (be it in the OS, the
TCP or in the TPM), which compares the desired screen
image with that currently displayed and transmits the
minimum data needed to effect the change. (Reducing ter-
minal-to-processor data-flow is of course less easily
achieved, requiring intelligence and storage in the terminal
itself.)

Supply of Preprocessed Data Streams to the
Application Program

The simplest approach is to provide the program with
the current contents of the screen, irrespective of what was
received in the most recent transmission. An improved ser
vice might be to supply, in addition to the data stream,
tables showing which fields were changed, which remain
unkeyed, which contain data inappropriate to the field
definition, etc. This can be provided equally well in a TCP
as in a TPM, since it is closely bound to the physical charac
teristics of the device.

Centralised Control over Control Flow
Software must decide which program is required to

service the input from the terminal. This function can be
built into the TPM. It can be performed equally well by a
(relatively tiny) table-driven menu-handler embedded in the
OS; or by a user-written master program which administers
the menu displays and arranges for the chosen program to
be run immediately after its own demise (commonly
referred to as ‘CalI-Next-Program’). Each application
program running in such an environment must admittedly
comply with the requirement that it pass control back to
the master program on completion, but as will be seen, a
similar discipline is required with a TPM.

From the above it will be clear that these factors, im
portant as they are, justify the creation of a Terminal Con
trol Program to administer the link between application
program and terminal, but not the conception, realisation
and implementation of the altogether more complex TP-
Monitor. The real reason for TP-Monitors must be sought
elsewhere.

1 44

TRANSACTION-ORIENTED PROGRAMMING
It can be argued that the ‘natural’ way to study

organisations, and to ‘objectively’ document their present
and intended functions, is to identify ‘work steps’ or organ
isational transactions. If so (and the issue remains
unresolved) then the ‘natural’ form that programs should
take is also transaction-oriented. The argument isn't just
one of structural elegance: much software development
activity is presently invested in the translation of design
information from one form into another, hence great
savings could be made if all stages of the production line
were to acknowledge the same methodological framework.

In such an environment we would then redefine the
role of information-processing services as the recording and
processing of organisational transactions, each trans
action being triggered by an organisational ‘event’. This
brings commercial processing much closer in concept to
process control or ‘real-time’ processing.

Batch Processing is then seen as an alternative means
for handling large-volume or low-priority work. High-
volume, long lead-time tasks need to be performed
‘asynchronously’ with respect to the terminal, such that the
end-user can himself schedule them, but without blocking
his own terminal. There is then no reason why batch
(terminal-asynchronous) jobs cannot run in a transaction-
oriented manner, under the same Monitor as online
(terminal-synchronous) tasks.

This is very convenient when an application
comprises sub-functions that are to be performed in either
and both online and batch modes. One example is a sub
function like the look-up of article price and article
discount (often dependent on a range of attributes of cus
tomer, article and order), which may be needed in the on
line program ‘Urgent Quotations’ and in the batch program
‘Low-Priority Invoices’. Another is recovery forward from a
checkpoint, when a perhaps large number of events that
were originally handled synchronously are to be repro
cessed in asynchronous mode.

DEFINITION OF A TPM
Much of the literature on the subject comprises the

reference material of the various suppliers of commercial
products. These are (quite justifiably) biased towards the
specifics of their own marketing strategy, host Operating
System(s), etc. See however Mills 1972, Davenport 1974,
KDCS 1978, PD V 1979 and Datapro 1979a and 1979b.

A working definition is suggested as follows:
A Teleprocessing Monitor is a subsystem of an
Operating System, which administers the logical and
perhaps also the physical link between each terminal
and the program (s) invoked to perform tasks initiated
by that terminal.

The term ‘logical link’ refers to communication with
an idealised terminal, independent of the physical charac
teristics of whatever terminal is physically on the other end
of the wire. The physical interfacing tasks therefore include
code conversion, synchronisation of physical data flows and
line-control/protocol-handling to the extent that this is not
performed by a communications network monitor. As indi
cated in Figure 1, these functions may be embedded in the
TPM or delegated to a Terminal Control module.

The Australian Computer Journal, Vol. 14, No. 4, November 1982

Teleprocessing Monitors and Program Structure

Terminals

Communications
\ Network
\ Monitor

Operating
System

TPM
alternative

► interpretation

Applications Program Program

Device
Driver

Device
Driver

Terminal Control Program (TCP)

Transaction-Processing
Monitor
(TPM)

Figure 1: A TPM and its Environment.

FUNCTIONS OF A TP-MONITOR
These are grouped according to whether or not they

are assessed by the author as being essential to the above
definition.

Essential Functions
Administration of //O-Data
— Data streams from terminals.
— Data streams to terminals.

Administration of Control Flow
— Selection of the next program.
— Passing control to that program.
— Receiving control back from that program.

Administration of Working Data
— Making data available to programs.
— Receiving data from programs.

Additional Functions
Physical terminal-handling

Embedding TCP within TPM.

interface with Permanent Data
Special commands or calls may provide the applica

tion program with an improved and/or standardised inter
face with data files (sequential, direct, indexed, multi-
indexed, tape, etc) or database. If the DBMS software is
integrated with the TPM, the resulting conglomerate is
referred to as a DB/DC Monitor. Some TPMs go so far as
to preclude the use of standard file-handling commands.

Starting of Asynchronous (Batch) Jobs

Screen-Definition Facilities
Utilities may be associated with the TPM to sup

port the specification and ' assembly of program-
independent masks. The term ‘Forms Processor’ is also
used. At one level the preparation of the physical layout
may be supported (‘screen painting’ or ‘forms editing’); at
another the specification of mask and field attributes.

Log files, Checkpoints, Restart/ Recovery

Accounting

News Broadcasts and Terminai/Terminai Communications

Security
e.g. User-Authorisation Checking.

Testing Facilities

A further function that can be performed by a TPM
relates to control-passing between the application-programs.

PASSING OF CONTROL WITHIN A
TP-MONITOR APPLICATION

The simplest possible arrangement is that the TP-
Monitor decides on the basis of some field in the input data
stream which program is to be called. That program passes
control to the TPM when it terminates, together with a data
stream for transmission back to the terminal. This data
stream may contain the name of the program which is to be
invoked when the operator next transmits

If the field is unprotected then the operator will be
able to override the default next-program call. It may be
necessary to key the whole program number in, or, more
conveniently a transaction-identification, function-key,
or selection-number or mnemonic which is converted into
the program name by table-lookup within the TPM. In
this way the operator is able to remain oblivious to pro
gram initiation and termination.

The whole of the processing may in principle be
placed in one large program. More realistically it may be
sub-divided into various subprograms (see Figure 2a). With

Sub
Program

Sub
Program

Sub
Program

TP*Program
Control

Figure 2a: Control-Passing using CALL.

The Australian Computer journal, Vol. 74, No. 4, November 7982 745

Teleprocessing Monitors and Program Structure

complex processing main-memory requirements may still
become too large, as the control program will remain in
memory at the same time as the invoked processing-code.

As an alternative to the CALL mechanism, the TPM
can provide the means for transferring control, as shown in
Figure 2b. A chain of control is passed along, with the
‘terminal’ programs having contact with the screen, the
processing programs only with other programs, the TPM
and the permanent data. The advantages are that some
main memory overhead is avoided and that only one type
of data-passing is involved i.e. ‘messages’ to and from the
TPM. A major disadvantage is that the application’s struc
ture is scattered throughout the entire application.

A further alternative has been provided by some
TPM suppliers who support a ‘pseudo-conversational’
mode. This enables the program to be written in a self-
contained form (see Clarke 1982b) with control decisions
embedded within the program. The program then com
mences with a decision as to where within the processing
it should commence (in COBOL terminology a GO TO
DEPENDING; there is arguably no equivalent construct
recognised by structured programming theory). The
program increases in size, but this is of little consequence
under an Operating System which supports virtual memory.

STRUCTURE OF TP PROGRAMS
The effects of a TP-environment upon program struc

ture are considerable. In Figure 3a is shown a simple ‘logical
program’ as it might be designed using Jackson’s Program
Design Method (Jackson, 1981). It could be implemented
in that form as a self-contained program (see Clarke
1982b).

In Figure 3b the same logical program is shown as it
might appear under a TP-Monitor. The first difference is
that there are several ‘physical programs’ required to imple
ment the single ‘logical program’.

A more critical difference is that each (physical) pro
gram commences with the receipt of a message and conclu
des with the sending of a message. A way to describe the
relationship between the two structures in Figures 3a and
3b, is to say that the first has been ‘inverted’ with respect
to its driving file to produce the second.

Each ‘TP-Program’ runs as a subprogram to the TPM.
Data may be transferred between TPM and TP-Program via
the LINKAGE SECTION and/or via additional facilities
depending on the particular TP Monitor. This article
focuses on control-structure rather than message-passing.

TP-Program
Control

TP-Program
Sub-Program

TP-Program
Control

Figure 2b: Control-Passing via TPM.

146

While
5S Not

Write
Screen
(Clear)

Write Read
Screen Screen
(Mask) (Data)

Initialise Finish

Process

Process
Body

Program

Screen Screen
(Data) (Data)

Figure 3a: Logical Structure of a Simple Self-Contained On-Line
Program.

Until
QUIT

Write
Screen
(Mask)

Write
Screen
(Clear)

Write

Process

TP-Program
Transaction

TP-Program
Finish

TP-Program
Initialise

Screen Screen
(Data) (Data)

Figure 3b: Logical Structure of a Simple Transaction-Oriented
On-Line Program.

CASE: OpCode
Write

Screen
(Clear)

Write
Screen
(Mask)

TP-Program
Delete

TP-Program
Amend

TP-Program
Create

TP-Program
Display

TP-Program
Initialise

TP-Program
Finish

R W R W R W R W

Figure 3c: Logical Structure of a Less Simple Transaction-Oriented
On-Line Program.

The Australian Computer Journal, Vol. 14, No. 4, November 1982

Teleprocessing Monitors and Program Structure

A single 'logical program’ may do more than merely,
say, display a record on the screen. It may also, depending
(commonly) upon an Operation Code, create, amend or
delete a data record. There would be then a Selection Con
struct within the Processing Body, and the flow of control
between the various ‘physical programs’ making up the
‘logical program’ quickly becomes tortuous.

There are three ways to handle the decision
making:
— embed it within the TP-Monitor (requiring a language

powerful enough to express the various possibilities).
Figure 3c illustrates this;

— embed it within a control program which remains
memory-resident, invoking the chosen functions as
subprograms (Figure 2a);

— perform the decision-making within a control pro
gram which passes control via the TPM to the chosen
program (Figure 2b).
Where all decision-making and routing for a single

logical program is performed by a control program, a means
is required for identifying the current context in an
accurate and efficient manner. State Transition Tables are
an appropriate device (see for example Juliff 1980, Petereit
1980, Flext 1982). This article will not deal in any detail
with this approach.

Two classes of TP Program can be identified. Those
which exchange messages not only with other programs but
also with the terminal are referred to here as Terminal-
Handling Programs. Those which communicate exclusively
with other programs perform a strictly processing function
and are referred to here as Data-Processing Programs'. With a
little care there is no reason why the latter should not be
able to be invoked alike by terminal-synchronous (online)
and terminal-asynchronous (batch) tasks. The use of TP-
Monitors to control batch processing is not further
discussed in this article.

A general structure is suggested in Figure 4, sufficient
to cater for most eventualities. The possible processing
functions (not all of which need necessarily be relevant to
any given program) are enveloped by functions catering for
the communications from and to the TPM. The actual
implementation of these communication functions depends
on the particular software environment.

On the basis of this general structure a set of macros
will be discussed which provides close support to the pro
gramming phase. First a brief introduction to program
generators is in order.
PROGRAM GENERATORS IN GENERAL

An assembler converts a source file directly into
executable form. A compiler deals with a source file differ
ently organised and sequenced from the object code it is to
create. A program-generator differs from them in the fol
lowing ways:
— the source-code is function- rather than procedure-

oriented;
— its output may be a high-level language, for input to

a compiler. Early versions of compilers often used
such a two-step technique by outputingan assembler
program. In the case of program generators, however,
this is not necessarily a temporary measure, as it
caters for multiple incompatible target compilers;

— as with the more modern assemblers and some com
pilable languages, it commonly includes a macro
language and processor, such that the source-language
is user-extensible.

Prepare
Output
Message

Receive
Message

Logical
Field

Edilting

Message

CrosvEdil
Against

Prepare

TP-Program

Figure 4: A generalised structure for TP-Programs.

Few satisfactory products are marketed. Most are
specific to particular machines, e.g. MANTIS and UFO
under particular IBM operating systems, NoCode from
General Automation, LINC from Burroughs NZ, and the
cutely-named ‘The Last One’, a UK product generating
Basic in CP/M and UNIX environments. Philip’s PET/
MAESTRO development-machine incorporates generator
functions. Clarke (1982a) provides an introduction to the
topic.

A powerful generator package with which the author
is familiar is independent of both its host software environ
ment and its target environments. DELTA is a Swiss
product, marketed since 1976 in German-speaking areas
and since 1980 also in the UK and Australia, with some 150
installations to date.

ONLINE PROGRAMS USING DELTA
The primary objectives of the development phase

(quick and cheap development, a clean product, porta
bility and low maintenance and enhancement costs and
lead-times) can be readily supported by DELTA together
with some customised macros.

Several developments in Germany and Switzerland,
notably at Systema GmbH, Mannheim (Clemens 1981,
but see also Ahrens 1981 and Thurner 1981) have used
DELTA in a context of control programs using State
Transition Tables. The structure suggested in Figure 4
requires extension to serve the purpose of such control
programs, but because of its relative simplicity will be used
below to illustrate the use of the DELTA tool-kit.

The Australian Computer Journal, Vol. 14, No. 4, November 1982 147

Teleprocessing Monitors and Program Structure

In addition to the facilities provided by the product
itself, a set of macros is required, to generate from a short
list of parameters the appropriate program shell, the inter
nal decision-making structure, and the communications
with both the TPM and the permanent-data handling-
environment. The actual processing can be coded in
COBOL or PL/1, or where portability is important,
exclusively in invocations of DELTA macros.

The invocation of the program structure can be
nested within the generation of the basic program shell:

. PROG-progname, AUTHOR=xxxx, DATE-WRITTEN=xx/xx/xx,—
TYPE=(DPP, COMMON=NO, FORMAL=NO,

XEDIT-FI LE=NO),—
MASK=xxxx,—
MSG=(xxxx,xxxx,xxxx,.. .)

The Keyword-Parameter ‘TYPE’ controls the class
of program to be generated (Terminal Handling will be in
this case excluded), and particular sub-functions can be
selected out (or if preferred, selected in), with a default-
list applicable. The list shown above would exclude the
sub-functions ‘Fetch Common Data’, 'Formal Field-
Editting’ and ‘Cross-Editting Against Reference-Files’.
The Keyword-Parameters MASK and MSG define those
screen-related data areas and TPM-communication records
that are to be invoked from the Data Dictionary.

The other sub-functions are made available, and one
or more ‘Locations’ defined in each, to enable the pro
cessing code to be inserted. These Locations are named
EDIT-FLD, XEDIT-FLDS and PROCESS. The code
would be inserted in the following form:

*___
(ad d l r -c u s t , UPDATE-ONPLACE
.ADD LR-LOG, EXTEND
_*___

The program end is signified, together with the field-
name which contains the Next-Program name:

_*___
.ADD PROG END, (NEXT=xxxx)*___

The above approach is generalised and simplified.
Nonetheless the experience of Systema GmbH with a more
powerful model is relevant: during 1980/81 typical
program-modules required 25-40 lines of specification at
the design stage and 150-250 lines of coding. The (COBOL)
code generated was of the order of 1500-2500 lines.

OVERVIEW OF THE MACRO STRUCTURE
The design and construction effort to provide such a

macro-set is not small. It is important to identify the differ
ent levels of abstraction, and to recognise those nested
functions which may vary, if only subtly, between one
program and another. These should be implemented in sep
arate macros if flexibility is to be maintained.

Three broad levels of abstraction are useful (although
the classes are clearly not disjunct):
— th e p rogram m er i n terface;
— nested macros to provide program flow control and

the logical interfaces;
— deeply-nested macros to handle the physical inter

faces.
The list below illustrates what is included in each of

these levels. Low-level macros can themselves invoke fur
ther macros.

SL=EDIT-FLD
ADD TESTRANGE, CUST-DISCOUNT, (0, 6) ,417
ADD TESTLIST, CUST-SLSZONE, (1,4,5,6), 418*___
SL=XEDIT-FLDS
ADD TESTEXCL, (CUST-DISCOUNT NOT = ZERO) , -

(CUST-SLSZONE = 6) ,-
* 419

SL=PROCESS
ADD MOVE, CUST, xxxx, (NAME, ADDRESS1 , ADDRESS2,

POSTCD)
ADD LASTUPDAT, CUST
ADD PUT, NEW, CUST
ADD PREPLOG, CUST
ADD PUT, APPEND, LOG
ADD PREPMASK, (MSG = 'CUSTOMER CREATED’)*________________________________:________

The processing code is generated by the minor macros
invoked here. In each case the interfaces to error handling
and exception-processing functions are generated automati
cally.

In practice even deeply-nested sub-functions can con
tain low level selection- and iteration-constructs in addit
ion to the sequential processing of the above example. Of
the several DELTA tools available for this task the ‘pseudo
code’ interpreter SPP is the most suitable.

The handling of logical records, and the generation of
physical file and record definitions and handling are well
established DELTA techniques and tools. In this case the
following would suffice to specify the links to the Data Dic
tionary:

Programmer Logical Physical
Interface Level Level

PROG THP/DPP (program-structure)
RC-TAB-ANSI RC-TAB-SPEC

TESTRANGE ERRMSG PHERRMSG
TESTLIST ERRMSG PHERRMSG
TESTEXCL ERRMSG PHERRMSG
LASTUPDDAT MOVE
PUT
PREPLOG MOVE
PREPMASK MOVE
LR-CUST LR-ROUTINES FD-CUST ISFILE

ISREC
PR-CUST-1
PR-CUST-2

PROGEND SELNPROG PHSELNPROG

CONCLUSION
Transaction-oriented on-line programs exhibit a

variety of forms, depending on the particular TP-Monitor
in use, and the using organisation’s experience and phil
osophy.

Design and development of such programs using an
advanced program generator such as DELTA enables
standardisation of methods of working, savings in develop
ment and maintenance, improved planning and control, and
portability of product.

ACKNOWLEDGEMENT
Die Hilfe von verschiedenen Kollegen im deutsch-

sprachlichen Raum wird dankend anerkannt, insbesondere
Hm Karl-Heinz Clemens und Hrn Dr Rainer Petereit von
der Firma Systema GmbH, Mannheim.

148 The Australian Computer Journal, Vol, 14, No. 4, November 1982

Teleprocessing Monitors and Program Structure

REFERENCES
AHRENS, Klaus-D. (1981): ‘Eine Methode ist nur so gut als das

Werkzeug’ article-series, ‘Computer-Woche Deutschland’,
April-May 1981.

CLARKE, Roger (1982a): ‘A Background to Program-Generators
for Commercial Applications’, Austral. Comput. J., 14, 2,
May 1982.

CLARKE, Roger (1982b): ‘Generating Self-Contained On-Line Pro
grams Using DELTA’, Proc 9th Australian Computer Con
ference, Hobart, August 1982.

CLEMENS, Karl-H. (1981): ‘Workshop: DB/DC mittels DELTA’,
Course Notes, Systema GmbH, Mannheim, Germany 1981.

DATAPRO (1979a): ‘A Buyer’s Guide to Data Communications
Monitors’, Reports on Data Communications C15-010-101
to 110 Datapro, May 1979.

DATAPRO (1979b): ‘Teleprocessing — The Modern Marriage of
Computers and Communications’, Solutions: Communica
tions CS10-150-101 to IDS, Datapro, June 1979.

DAVENPORT, R.A. (1974): ‘Design of Transaction-Oriented
Systems Employing a Transaction Monitor’, Proc ACM,
1974,222-230.

HEXT, J.B. (1982): ‘State Transition Tables’, Austral. Comput. J.,
14,1 February 1982.

JACKSON, M. (1981): ‘An Introduction to Jackson Structured
Programming and Jackson System Development’, South-
West Universities Regional Computer Centre, Bath, 1981.

JULIFF, Peter (1980): ‘Program Control by State Transition
Tables’, Austral. Comput. /., 12, 4, November 1980.

KDCS (1978), ‘KDCS-Benutzerhandbuch’, Bundesminister des
innern, Bonn, Germany, 1978 (Kompatibler Daten-Kommu-
nikations System).

KEEDY, J.L. (1980): 'Virtual Memory’, Austral. Comput.]., 12,
2, May 1980.

MILLS, D.L. (1972): ‘Communication Software’, Proc IEEE, 60:
11, November 1972.

PETEREIT Rainer (1980): ‘Architecktur und Entwurf moderner
kommerzieller Software’. Proceedings of the International
Congress for Data Processing, AMK, Berlin 1980.

PDV (1979): ‘COSMOS: Allgemeine Beschreibung’, PDV Unterneh-
mensberatung fuer Datenverarbeitung GmbH, Hamburg,
Germany 1979.

THURNER, Reinhold (1981),‘Softwareentwicklung heute’, Article-
series Sysdata (Germany) October 1980 — April 1981.

BIBLIOGRAPHICAL NOTE
Details were published in the May 1982 issue of this

Journal. Since then the author has returned to Australia. He
is acting as a consultant, primarily in the field of commer
cial software development. He is associated with Software
Solutions Pty Ltd, for whom he manages the program gen
erator package DELTA.

The Australian Computer journal, Vol. 14, No. 4, November 1982 149

